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h i g h l i g h t s

• Presentation of a kinetic multi-scale model, describing the sedimentation of rod-like particles.
• Derivation of macroscopic models, which describe the collective behavior of the system.
• A linear stability analysis, which predicts instability and a wavelength selection mechanism.
• Numerical simulations, which compare the macroscopic models with the kinetic model.
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a b s t r a c t

Weconsider a kineticmodel, which describes the sedimentation of rod-like particles in dilute suspensions
under the influence of gravity, presented in Helzel and Tzavaras (submitted for publication). Here we
restrict our considerations to shear flow and consider a simplified situation,where the particle orientation
is restricted to the plane spanned by the direction of shear and the direction of gravity. For this simplified
kinetic model we carry out a linear stability analysis and we derive two different nonlinear macroscopic
models which describe the formation of clusters of higher particle density. One of these macroscopic
models is based on a diffusive scaling, the other one is based on a so-called quasi-dynamic approximation.
Numerical computations, which compare the predictions of the macroscopic models with the kinetic
model, complete our presentation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We discuss different mathematical models which describe the
sedimentation process for dilute suspensions of rod-like particles
under the influence of gravity. The sedimentation of rod-like parti-
cles has been studied by several authors in theoretical as well as
experimental and numerical works, see Guazzelli and Hinch [1]
for a recent review paper. Experimental studies of Guazzelli and
coworkers [2–4] start with a well stirred suspension. Under the
influence of gravity, a well stirred initial configuration is unstable
and it is observed that clusters with higher particles concentration
form. These clusters have a mesoscopic equilibrium width. Within
a cluster, individual particles tend to align in the direction of
gravity.
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The basic mechanism of instability and cluster formation was
described in a fundamental paper of Koch and Shaqfeh [5]. In
Helzel and Tzavaras [6], we recently derived a kinetic model
which describes the sedimentation process for dilute suspensions
of rod-like particles. By applying moment closure hypotheses
and other approximations to an associated moment system, we
derived macroscopic models for the evolution of the rod density
and compared the prediction of such macroscopic models to the
original kinetic model using numerical experiments. This is done
in [6] for rectilinear flows with the particles taking values on the
sphere.

In the present work, in order to explain our approach, we
restrict our analysis to the simpler case of shear flows for particles
with orientations restricted to take values on the plane. While
the derivations in [6] are often quite technical, the restriction to
this simpler situation provides a useful and technically simple
setting in order to understand the underlying ideas. In addition,
it turns out that the form of the derived macroscopic equations is
identical in both cases apart from the values of numerical constants
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that capture the effect of dimensionality in the microstructure.
Therefore, we hope that this paper will make our results accessible
and useful to a wider community interested in the modeling of
complex fluids. Moreover, we also consider an alternative route
to closure at the density level via diffusive scaling. The closure via
diffusive scaling leads to the classical Keller–Segel system while
the quasi-dynamic approximation leads to a variant of a flux-
limited Keller–Segel system. The different effective equations are
numerically compared among each other and also compared with
a computation of the full nonlinear kinetic model.

The article is organized as follows: In Section 2, we present
the kinetic model from [6] and the non-dimensionalization of
the problem. For vertical shear flows we derive a simplified one-
space dimensional model, obtained by restricting the orientation
of particles to move in a plane. In Section 3 a nonlinear moment
closure system is derived (see (38)–(41)) which forms the basis for
all further considerations. Effective equations for the evolution of
themacroscopic density are obtained via two approaches: Starting
from the moment system (38)–(41) in Section 4, we employ a
quasi-dynamic approximation and derive an effective equation
for the evolution of the macroscopic density. The approximation
amounts to replacing the dynamical behavior of the second
order moments by enslaving the second-order moments to their
respective local equilibria. An alternative approach is presented
in Section 5 and Appendix A, where the effective equation for the
density is obtained directly from the kinetic equation via a diffusive
limit. The diffusive approximation leads to the well known
Keller–Segel model (52), while the quasi-dynamic approximation
leads to a flux-limited Keller–Segel type model (46).

In Section 6 we present numerical results comparing the
diffusive approximation and the quasi-dynamic approximation to
the full kinetic model. Although the idea of diffusive scalings to
obtain macroscopic equations is commonplace in kinetic theory
(see [7–9]), it has not been applied (to our knowledge) in
the sedimentation problem. The derivation of the hyperbolic
and diffusive scaling equations for general rectilinear flows is
presented in Appendix A for the general case where the directions
of the rod-like particles take values on the sphere. Finally, in
Appendix B, we present a stability analysis for the linearized
moment closure system to establish the linear instability of the rest
state under a shear flow perturbation. It turns out that a nonzero
Reynolds number provides a wavelength selection mechanism.
An asymptotic analysis of the largest eigenvalue around Re = 0
explains this behavior.

2. A kinetic model for the sedimentation of rod-like particles

We describe a kinetic model for sedimentation in dilute sus-
pensions of rod-like Brownian particles, following Doi and Ed-
wards [10, Ch. 8]; see also [11,12]. The model accounts for the
effects of gravity and hydrostatic interactions in a dilute suspen-
sion (see [6]).

Consider a suspension consisting of inflexible rod-like particles
of thickness b and length l, with b ≪ l, submerged in a solvent
extending over the entire space. The rods are subjected to a gravity
field g = −ge3, with gravitational constant g and where e3 is the
unit vector in the upward direction. If m0 denotes the mass of an
individual particle then G = −m0ge3 is the force of gravity on a
single particle. Some of our basic notation is depicted in Fig. 1.

The motion of the particles is friction dominated. If u(x, t)
stands for the velocity field of the solvent, then a rigid particle is
described by the position x ∈ Rd of the center of mass and the
orientation n ∈ Sd−1 of the rod. Kinematic considerations dictate
that each rod obeys the equations
dx
dt

= u +


1
ζ∥

n ⊗ n +
1
ζ⊥

(I − n ⊗ n)


G

dn
dt

= Pn⊥∇xun

Fig. 1. Basic notation for rod-like molecule which is falling sidewards.

where

Pn⊥∇xun =

I − n ⊗ n


(∇xu)n

is the projection of the vector (∇xu)n onto the tangent space at
n, while ζ∥ and ζ⊥ are the frictional coefficients in the tangential
and the normal direction. Note that ζ⊥ = 2ζ∥, see [10, App 8.I],
implying that a particlewith a vertical orientation sediments twice
as fast as a particle with horizontal orientation while a particle of
oblique orientation moves also sideways.

Upon including the effects of rotational and translational
Brownianmotion the kinematics of themicrostructure is described
by the system of stochastic differential equations

dx =


u +

 1
ζ∥

n ⊗ n +
1
ζ⊥

(I − n ⊗ n)

G

dt

+


2kBθ
ζ∥

n ⊗ n +
2kBθ
ζ⊥

(I − n ⊗ n) dW

dn = Pn⊥∇xun dt +


2kBθ
ζr

dB

(1)

whereW is the translational Brownianmotion and B the rotational
Brownian motion, ζr the rotational friction coefficient, kB the
Boltzmann constant and θ the absolute temperature.

We consider a suspension of many such molecules in the dilute
regime, characterized by the relation νl3 ≪ 1. In this regime the
average distance of molecules is much larger than their length
and the molecules remain nearly statistically independent. By
the law of large numbers the empirical distribution of particles
as a function of the center of mass x and orientation n is well
approximated by a probability distribution f (t, x, n) dndx. By
the equivalence of drift–diffusion equations and Fokker–Planck
equations, the dynamics can be described by the Smoluchowski
equation

∂t f + ∇x ·


u +

1
ζ⊥

(n ⊗ n + I)G

f


+ ∇n ·

Pn⊥∇xunf


=

kBθ
ζr

∆nf +
kBθ
ζ⊥

∇x · (n ⊗ n + I) ∇xf . (2)

Here, ∇x and ∇x· denote the usual gradient and divergence in the
macroscopic flow domain. On the other hand, ∇n stands for the
surface gradient operator (on the sphere), acting on a scalar func-
tion ϕ = ϕ(n) by the formula ∇nϕ = ∇ϕ − n(n · ∇ϕ) where
∇ stands for the usual gradient operator. The gradient, divergence
and Laplacian on the sphere are denoted by ∇n, ∇n· and ∆n, The
second term on the left hand side of (2) models transport of the
center ofmass of the particles due to themacroscopic flow velocity
and due to gravity. The last term on the left hand side models the
rotation of the axis due to amacroscopic velocity gradient∇xu. The
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