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h i g h l i g h t s

• We study numerically the oscillatory instabilities of fundamental gap solitons.
• We use the Evans function combined with the exterior algebra formulation.
• The case of repulsive interactions is considered.
• The oscillatory instability found for fundamental gap solitons in the first and second gaps.
• The results are confirmed by direct simulations of the dynamics.
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a b s t r a c t

The paper is devoted to numerical study of stability of nonlinear localized modes (‘‘gap solitons’’) for
the spatially one-dimensional Gross–Pitaevskii equation (1D GPE) with periodic potential and repulsive
interparticle interactions. We use the Evans function approach combined with the exterior algebra
formulation in order to detect and describe weak oscillatory instabilities. We show that the simplest
(‘‘fundamental’’) gap solitons in the first and in the second spectral gap undergo oscillatory instabilities
for certain values of the frequency parameter (i.e., the chemical potential). The number of unstable
eigenvalues and the associated instability rates are described. Several stable and unstable more complex
(non-fundamental) gap solitons are also discussed. The results obtained from the Evans function approach
are independently confirmed using the direct numerical integration of the GPE.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Gross–Pitaevskii equation (GPE),

iΨt = −Ψxx + V (x)Ψ + σ |Ψ |
2Ψ , (1)

describes the meanfield dynamics of a quasi-one-dimensional
Bose–Einstein condensate (BEC) confined in the potential V (x) [1].
In Eq. (1), Ψ = Ψ (t, x) is the complex-valued macroscopic
wavefunction of the condensate. The squared amplitude of the
wavefunction |Ψ (t, x)|2 describes the local density of the BEC,
while the gradient (argΨ (t, x))x describes the velocity of atoms
of condensate. The nonlinear term σ |Ψ |

2Ψ takes into account the
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interactions between the particles. The case σ = 1 corresponds
to repulsive interparticle interactions, while σ = −1 describes
attractive interactions. Both these cases are of physical relevance,
but in what follows, we mainly focus on the repulsive case, σ = 1.
It is assumed that the potential V (x) is periodic, which corresponds
to the optical confinement of the BEC [2,3].

An important class of solutions of theGPE (1) corresponds to the
stationary modes which can be represented in the form Ψ (t, x) =

e−iµtu(x), where µ is a real parameter having the meaning of the
chemical potential of the BEC. Function u(x) satisfies the conditions
of the spatial localization

lim
x→±∞

u(x) = 0. (2)

Without loss of generality one can assume that u(x) is real-
valued [4]. Then u(x) can be found from the stationary GPE

uxx + (µ− V (x))u − σu3
= 0. (3)
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If the potential V (x) is periodic, the nonlinear modes satisfying
(2)–(3) are called gap solitons [2,3,5–8], since values of µ
corresponding to these solutions lie in the spectral gaps of the
linear Schrödinger equation [9]

uxx + (µ− V (x))u = 0. (4)

The simplest class of the gap solitons are fundamental gap
solitons (FGSs) [5,7,10–12]. Under the repulsive nonlinearity, in the
first gap there exists one family of FGSs which are characterized
by the presence of a single dominating peak localized in one well
of the potential V (x). A variety of more complex (or higher-order)
solitons includes truncated Bloch waves [13,14] (which consist
of several in-phase peaks placed in a row), various asymmetric
states, and complex bound states of two (or more) well-separated
waves [15], etc. In spite of their rich diversity, under certain (not
very restrictive) conditions all possible gap solitons in a repulsive
BEC can be viewed as complexes of FGSs and classified using an
alphabet consisting of a few symbols [16]. Specifically, if the lattice
is deep enough, then all the gap solitons in the first gap can be
put into a one-to-one correspondence with the set of bi-infinite
sequences of symbols from a three-symbol alphabet. In simple
terms, these symbols denote the presence or the absence of the
FGS (taken with plus or minus sign) in a potential well situated on
the period of the potential V (x). For instance, the truncated Bloch
waves [13,14] consisting of several in-phase peaks placed in a row
can be viewed as complexes of single-hump FGSs. For classification
of the gap solitons in the second spectral gap, an alphabet of five
symbols is necessary, and so on.

An important property of a gap soliton is its stability, since only
dynamically stable modes are likely to be experimentally feasible.
The literature about stability of gap solitons is rather abundant
[6–8,11–13,17–19]. The most relevant for our study outcomes for
the case of repulsive interactions (σ = 1) can be summarized as
follows. Significant part of the studies concluded that the single-
hump FGSs are stable in the first gap [6,7,10–12] and in the second
gap [10–12]. Regarding the higher-order states consisting of two
or three in-phase peaks, they have been reported unstable near
the upper band edge in [7] in the first gap. However, these states
have been found to be stable both in the first [11,13] and in the
second [11] gap if the lattice depth is large enough.

The results listed above have been obtained on the basis of
numerical studies of stability. In the meanwhile, it is recognized
that the numerical analysis of stability of the gap solitons is quite a
delicate problem. A standard approach to the stability relies on the
linear (or spectral) stability technique which reduces the stability
question to a study of the spectrum of a certain linear operator.
Depending on the character of unstable eigenvalues, the instability
typically manifests itself either as a purely exponential instability
(when the unstable eigenvalues have zero imaginary parts) or as
an oscillatory instability (OI) (when the unstable eigenvalues are
complex with nonzero imaginary parts). While the instabilities of
the former type are relatively simple to detect [8,18], the accurate
tracing of OIs is much more challenging [7,8]. As a result, the
information about OIs of gap solitons in optical lattices is rather
scarce. The absence of information on OIs for the simplest one-
hump gap solitons in GPE is especially remarkable in view of
well-known OIs of Bragg gap solitons in nonlinear Dirac equations
[20–22]. The latter system can be deduced from the GPE with
a shallow periodic potential using an asymptotic multiple-scale
expansion [17,23], and therefore the results about OIs of the
solitons for Dirac system seem to be not consistent with the
stability results for the single-hump FGS mentioned above.

The numerical difficulties arising in the analysis of the OIs of
the gap solitons are related to several issues. First, the rates of
OIs are typically quite small [8,18]. Another difficulty results from
poor localization of the gap soliton and (or) of the eigenfunction

associated with an unstable eigenvalue. This situation typically
takes place when the chemical potential µ is close to the gap
edge. It requires unpractically wide computational windows or a
particularly accurate treatment of the boundary conditions. Some
of these difficulties can be overcome using the Evans function
approach which was employed in [8] to trace OIs of gap solitons in
the attractive condensates. Itwas further demonstrated in [24] that
the numerically accurate evaluation of the Evans function requires
a careful treatment of the stiffness issue which arises for some
values of the complex argument of the Evans function. The stiffness
problem can be fixed if one redefined the Evans function using the
exterior algebra formalism [22,24]. This idea has been developed
into a robust numerical technique which was demonstrated to
provide reliable results even for relatively weak instabilities of gap
solitons [22,24].

In the present paper, we use the Evans function approach
combined with the exterior algebra formulation in order to reveal
and describe weak OIs of FGS and higher-order gap solitons in the
repulsive BEC. We focus on the first and second spectral gaps. In
each gap, we consider the single-hump FGS and two higher-order
solitons bearing two or three in-phase humps. The main outcomes
of our numerical study can be outlined as follows.

1. In the first gap, all the considered solitons (including the single-
hump FGS) are stable far from the upper band edge, but undergo
OIs in the region near the upper band edge. The width of this
instability region is quite significant: it occupies about 15%–20%
of the width of the first gap.

2. In the second gap, all the considered solitons (including the
FGSs) are, in general, unstable due to OIs. However, in a
sufficiently deep potential, there exist intervals ofµwhere FGS
are stable.

To the best of our knowledge, our results constitute the first
explicit demonstration and detailed description of OIs for FGSs
in the case of repulsive interactions σ = 1 in the first and in the
second gap. On the other hand, our results advance the current
understanding of the higher-order modes [13], since we show that
they undergo OIs even in a deep potential.

In order to confirm the linear stability results, we have also
performed a series of direct simulations of temporal behavior of
the solitons in the GPE (1). The results of these studies agree with
the conclusions obtained from the linear stability analysis and
display the slow decay of unstable gap solitons and the persistent
evolution of the stable ones.

The rest of the paper is organized as follows. In Section 2 we
briefly describe the families of gap solitons whose stability is the
main subject of the present study. In Section 3 we present our
main results on linear and nonlinear stability of the gap solitons.
Section 4 concludes the paper.

2. Families of gap solitons

In our study, we use a prototypical example of the periodic
potential in the form

V (x) = −V0 cos(2x), (5)

where real V0 > 0 characterizes the depth of the lattice.
The spectrum of the linear eigenvalue problem (4) with the

potential (5) consists of one semi-infinite gap and a countable set
of finite gaps [9] (see Fig. 1). In our study, we consider the gap
solitons in the first and in the second gap (no gap solitons exist
in the semi-infinite gap in repulsive BECs). In each of the gaps,
we consider three families of nonlinear modes: the fundamental
gap soliton with the single dominating peak at x = 0 (the single-
hump FGS), and two higher-order solitons, with two and three
dominating peaks. In the terminology of [13], these higher-order
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