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h i g h l i g h t s

• We provide the averaging theory at any order for a class of discontinuous systems.
• The main theorem allows to study the limit cycles of these systems.
• The main result is applied to study nonsmooth perturbations of nonlinear centers.
• For these centers we estimate the number of limit cycles.
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a b s t r a c t

This work is devoted to study the existence of periodic solutions for a class of ε-family of discontinuous
differential systems with many zones. We show that the averaged functions at any order control the
existence of crossing limit cycles for systems in this class. We also provide some examples dealing with
nonsmooth perturbations of nonlinear centers.
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1. Introduction and statement of the main results

In the qualitative theory of real planar differential system the
determination of limit cycles, defined by Poincaré [1], has become
one of the main problems. The second part of the 16th Hilbert
problem deals with planar polynomial vector fields and proposes
to find a uniform upper bound H(n) (called Hilbert’s number)
for the number of limit cycles that these vector fields can have
depending only on the polynomial degree n. The averagingmethod
has been used to provide lower bounds for theHilbert numberH(n)
see, for instance, [2]. The interest on this topic extends to what we
call discontinuous piecewise smooth vector fields.

The increasing interest in the theory of nonsmooth vector fields
has been mainly motivated by its strong relation with Physics,
Engineering, Biology, Economy, and other branches of science.
In fact, discontinuous piecewise smooth differential systems are
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very useful to model phenomena presenting abrupt switches such
as electronic relays, mechanical impact, and neuronal networks,
see for instance [3–5]. The extension of the averaging theory to
discontinuous piecewise smooth vector field has been the central
subject of investigation of the following works [6–9].

A piecewise smooth vector field defined on an open bounded
set U ⊂ Rn is a function F : U → Rn which is continuous except
on a set Σ of measure 0, called the set of discontinuity of the vector
field F . It is assumed that U \ Σ is a finite collection of disjoint
open sets Ui, i = 1, 2, . . . ,m, such that the restriction Fi = F

⏐⏐
Ui

is
continuously extendable to the compact set Ui. The local trajectory
of F at a point p ∈ Ui is given by the usual notion. However the
local trajectory of F at a point p ∈ Σ needs to be given with some
care. In [10], taking advantage of the theory of differential inclusion
(see [11]), Filippov established some conventions for what would
be a local trajectory at points of discontinuity where the set Σ is
locally a codimension one embedded submanifold ofRn. For a such
point p ∈ Σ , we consider a sufficiently small neighborhood Up of p
such that Σ splits Up \ Σ in two disjoint open sets U+

p and U−
p and
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denote F±(p) = F
⏐⏐
U±
p
(p). In short, if the vectors F±(p) point at the

same direction then the local trajectory of F at p is given as the con-
catenation of the local trajectories of F± at p. In this casewe say that
the trajectory crosses the set of discontinuity and that p is a crossing
point. If the vectors F±(p) point in opposite directions then the local
trajectory of F at p slides on Σ . In this case we say that p is a sliding
point. For more details on the Filippov conventions see [10,12].

In this paper we are interested in establishing conditions for
the existence of crossing limit cycles for a class of discontinuous
piecewise smooth vector fields, that is limit cycleswhich only cross
the set of discontinuity Σ . It is worth to say that if Σ is locally
described as h−1(0), being h : U → R a smooth function and
0 a regular value, then ⟨∇h(p), F+(p)⟩⟨∇h(p), F−(p)⟩ > 0 is the
condition in order that p is a crossing point. For nonautonomous
system the samedefinition can be applied considering the extended
phase space where the system becomes autonomous by taking the
time as a new space variable with constant velocity equal to 1.

In the sequel we introduce a short review of the averaging
theory for computing isolated periodic solutions of differential
equations. Then we set the class of nonautonomous discontinuous
piecewise smooth differential equations that we are interested
as well as our main result (Theorem 1). After that the rest of
this section is devoted to present a class of planar autonomous
discontinuous piecewise smooth differential systems that can be
studied using our main result. We stress that this last class of
systems stands as a motivation for this work.

1.1. Background on the averaging theory for smooth systems

Let D be an open bounded subset of R+ and denote S1
≡

R/(2πZ). Consider Ck+1 functions Fi : S1
× D → R for i =

0, 1, 2, . . . , k, and R : S1
× D × (−ε0, ε0) → R. Note that θ ∈

S1
≡ R/(2πZ) means that the above functions are 2π-periodic in

the variable θ . Now consider the following differential equation

r ′(θ ) =

k∑
i=0

εiFi(θ, r) + εk+1R(θ, r, ε), (1)

and assume that the solution ϕ(θ, ρ) of the unperturbed system
r ′(θ ) = F0(θ, r), such that ϕ(0, ρ) = ρ, is 2π-periodic for every
ρ ∈ D. Here the prime denotes the derivative in the variable θ .

A central question in the study of system (1) is to understand
which periodic orbits of the unperturbed system r ′(θ ) = F0(θ, r)
persist for |ε| ̸= 0 sufficiently small. In otherswords to provide suf-
ficient conditions for the persistence of isolated periodic solutions.
The averaging theory is one of the best tools to track this problem.
Summarizing, it consists in defining a collection of functions fi :

D → R, for i = 1, 2, . . . , k, called averaged functions, such
that their simple zeros provide the existence of isolated periodic
solutions of the differential equation (1). In [13,14] it was proved
that these averaged functions are

fi(ρ) =
yi(2π, ρ)

i!
, (2)

where yi : R × D → R for i = 1, 2, . . . , k, are defined recurrently
by the following integral equations

y1(θ, ρ) =

∫ θ

0

(
F1 (φ, ϕ(φ, ρ)) + ∂F0(φ, ϕ(φ, ρ))y1(φ, ρ)

)
dφ,

yi(θ, ρ)

= i!
∫ θ

0

⎛⎝Fi (φ, ϕ(φ, ρ)) +

i∑
l=1

∑
Sl

1
b1! b2!2!b2 · · · bl!l!bl

· ∂LFi−l (φ, ϕ(φ, ρ))
l∏

j=1

yj(φ, ρ)bj

⎞⎠ dφ, for i = 2, . . . , k.

(3)

Here ∂LG(φ, ρ) denotes the derivative order L of a function G
with respect to the variable ρ, and Sl is the set of all l-tuples of

non-negative integers (b1, b2, . . . , bl) satisfying b1 + 2b2 + · · · +

lbl = l, and L = b1 + b2 + · · · + bl.
When one considers the above problem in the world of dis-

continuous piecewise smooth differential systems it is not always
true that the higher averaged functions (2) allow to study the
persistence of isolated periodic solutions. In [7,9] this problemwas
considered for general Filippov systems when F0(θ, r) ≡ 0 and it
was proved that the averaged function of first order can provide in-
formation on the existence of crossing isolated periodic solutions.
Furthermore the authors have found conditions on those systems
in order to assure that the averaged function of second order also
provides information on the existence of crossing isolated periodic
solutions. When F0(θ, r) ̸≡ 0 but the solutions of the unperturbed
system ṙ = F0(θ, r) are 2π-periodic the authors in [8] have found
conditions on those systems in order to assure that the averaged
function of first order provides information on the existence of
crossing isolated periodic solutions.

1.2. Standard form and main result

In what follows we introduce a class of discontinuous nonau-
tonomous piecewise smooth differential equations for which the
averaged functions (2) at any order provide information on the
existence of isolated periodic solutions.

Let n > 1 be a positive integer, α0 = 0, αn = 2π and
α = (α1, . . . , αn−1) ∈ Tn−1 a (n − 1)-tuple of angles such that 0 =

α0 < α1 < α2 < · · · < αn−1 < αn = 2π . For i = 0, 1, . . . , k and
j = 1, 2, . . . , n, let F j

i : S1
×D → R and Rj

: S1
×D×(−ε0, ε0) → R

be Ck+1 functions, where D is an open bounded interval of R+ and
S1

≡ R/(2πZ). Denote

Fi(θ, r) =

n∑
j=1

χ[αj−1,αj](θ )F
j
i (θ, r), i = 0, 1, . . . , k, and

R(θ, r, ε) =

n∑
j=1

χ[αj−1,αj](θ )R
j(θ, r, ε),

(4)

where χA(θ ) denotes the characteristic function of an interval A:

χA(θ ) =

{
1 if θ ∈ A,

0 if θ ̸∈ A.

We note that θ ∈ S1
≡ R/(2πZ) means that the above functions

are 2π-periodic in the variable θ .
This work is devoted to study the existence of isolated pe-

riodic solutions of the following discontinuous nonautonomous
2π-periodic piecewise smooth differential equation

r ′(θ ) =

k∑
i=0

εiFi(θ, r) + εk+1R(θ, r, ε). (5)

In this case the set of discontinuity is given by Σ = ({θ = 0 ≡

2π}∪{θ = α1}∪· · ·∪{θ = αn−1})∩S1
×D. In short,we shall provide

sufficient conditions in order to show that, for |ε| ̸= 0 sufficiently
small, the averaged functions (2) at any order can be used to ensure
the existence of crossing limit cycles. It isworth tomention that the
Lth derivative of the discontinuous function Fi with respect to the
second variable, ∂LFi(θ, r), which appears in the averaged functions
(2), is given by

∂LFi(θ, r) =

n∑
j=1

χ[αj−1,αj](θ )∂
LF j

i (θ, r), i = 0, 1, . . . , k.

Denote by ϕ(θ, ρ) the solution of the system r ′(θ ) = F0(θ, r)
such that ϕ(0, ρ) = ρ. From now on this last system will be called
unperturbed system. We assume the following hypothesis:

(H1) For each ρ ∈ D the solution ϕ(θ, ρ) is defined for every
θ ∈ S1, it reaches Σ only at crossing points, and it is
2π-periodic.
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