Accepted Manuscript

The influence of canalization on the robustness of Boolean networks

C. Kadelka, J. Kuipers, R. Laubenbacher

PII: S0167-2789(16)30362-1

DOI: http://dx.doi.org/10.1016/j.physd.2017.05.002

Reference: PHYSD 31911

To appear in: Physica D

Received date: 15 July 2016 Revised date: 3 May 2017 Accepted date: 8 May 2017

Please cite this article as: C. Kadelka, et al., The influence of canalization on the robustness of Boolean networks, *Physica D* (2017), http://dx.doi.org/10.1016/j.physd.2017.05.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

The Influence of Canalization on the Robustness of Boolean Networks

C. Kadelka^{a,b,1,*}, J. Kuipers^c, R. Laubenbacher^{d,e,1}

^aInstitute of Medical Virology, University of Zurich, 8006 Zurich, Switzerland
^bDivision of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, 8091 Zurich, Switzerland
^cD-BSSE, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
^dCenter for Quantitative Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
^eJackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA

Abstract

Time- and state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by k-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The variable activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to c-sensitivity and provides formulas for the activities and c-sensitivity of general k-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the c-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally efficient way to obtain Derrida values of Boolean networks, deterministic or stochastic, that does not involve simulation.

Keywords: k-canalizing function, Derrida value, Boolean network, nested canalizing function, stability

1. Introduction

The robustness of dynamic networks has long been an important topic of investigation in a wide range of contexts, using various definitions of the concept [1, 2]. Due to the important role of stochasticity in the dynamic behavior of biological networks, in particular gene regulatory networks, the concept of robustness has been studied extensively in this context [3]. Since the introduction of Boolean and logical network models to the study of the properties of gene regulatory networks [4, 5], time- and state-discrete dynamical systems have become an increasingly popular representation of molecular networks [6, 7, 8]. For the most part, these consist of Boolean networks and various generalizations thereof. Questions regarding the robustness of molecular networks, modeled in the time- and state-discrete dynamical systems framework, frequently involve the relationship between structural features of the network and its resulting dynamics. One commonly used measure of the robustness of such a network is the so-called Derrida value of the network, a measure of how perturbations propagate through the network [9]. This measure can then be related to network

^{*}Corresponding author

Email addresses: kadelka.claus@virology.uzh.ch (C. Kadelka), jack.kuipers@bsse.ethz.ch (J. Kuipers), laubenbacher@uchc.edu (R. Laubenbacher)

¹Supported by NSF Grant CMMI-0908201 and US DoD Grant W911NF-14-1-0486

Download English Version:

https://daneshyari.com/en/article/5500250

Download Persian Version:

https://daneshyari.com/article/5500250

<u>Daneshyari.com</u>