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h i g h l i g h t s

• We explore the equilibria in nematic microfluidics as a function of pa- rameters (G, B).
• We demonstrate multistability for admissible pairs (G, B).
• We perform an asymptotic analysis of the static equilibria in the limits G → 0 and G → ∞.
• We study the sensitivity of the dynamic solutions to initial conditions.
• We control the final steady state by manipulating the rate of change of G and B.
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a b s t r a c t

We study the static equilibria of a simplified Leslie–Ericksen model for a unidirectional uniaxial nematic
flow in a prototype microfluidic channel, as a function of the pressure gradient G and inverse anchoring
strength, B. We numerically find multiple static equilibria for admissible pairs (G, B) and classify
them according to their winding numbers and stability. The case G = 0 is analytically tractable and
we numerically study how the solution landscape is transformed as G increases. We study the one-
dimensional dynamical model, the sensitivity of the dynamic solutions to initial conditions and the rate
of change of G and B. We provide a physically interesting example of how the time delay between the
applications of G and B can determine the selection of the final steady state.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recent years have seen a tremendous surge in research in
complex fluids, of which nematic liquid crystals (NLC) are a prime
example [1–3]. Nematic liquid crystals are anisotropic liquids that
combine the fluidity of liquids with the orientational order of
solids i.e. the constituent rod-like molecules typically align along
certain preferred or distinguished directions and this orientational
anisotropy can have a profound optical signature [4]. Various
researchers have already looked at effects of magnetic, electric or
flow fields on pattern formation in confined nematic systems [1,5].
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In particular, microfluidics is a thriving area of research; scientists
typicallymanipulate fluid flow, say conventional isotropic fluids, in
narrowchannels complementedbydifferent boundary treatments,
leading to novel transport and mixing phenomena for fluids and
potentially new health and pharmaceutical applications [6–8].
A natural question to ask is what happens when we replace a
conventional isotropic liquid with an anisotropic liquid, such as
a nematic liquid crystal? [3] Nematic microfluidics have recently
generated substantial interest by virtue of their optical, rheological
and backflow properties along with their defect profiles [9].

In Sengupta et al. [3], the authors investigate, both experimen-
tally and numerically, microfluidic channels filled with nematic
solvents. The authors work with a thin microfluidic channel with
length much greater than width and width much greater than
depth. A crucial consideration is the choice of boundary condi-
tions and the authors work with homeotropic or normal bound-
ary conditions on the top and bottom channel surfaces, which
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require the molecules to be oriented in the direction of the sur-
face normal. The anchoring strength is a measure of how strongly
the boundary conditions are enforced: strong anchoring roughly
corresponds to Dirichlet conditions for the director field and zero
anchoring describes free (Neumann homogeneous) boundary con-
ditions. We expect most experiments to have moderate to strong
anchoring conditions. The authors impose a flow field transverse
to the anchoring conditions so that there are at least two compet-
ing effects in the experiment: anchoring normal to the boundaries
and flow along the length of the microfluidic channel. They work
with weak, medium, and strong flow speeds in qualitative terms
and observe complex flow transitions. In the weak-flow regime,
the molecules are only weakly affected by the flow and the molec-
ular orientations are largely determined by the anchoring condi-
tions. As the flow strength increases, a complex coupling between
the molecular alignments and the flow field emerges and the ne-
matic molecules reorient to align somewhat with the flow field.
The medium-flow director field exhibits boundary layers near the
center and the boundaries where the director field is strongly in-
fluenced by either the flow field or the boundary conditions. In
the strong-flow regime, themolecules are almost entirely oriented
with the flow field, with the exception of thin boundary layers near
the channel surfaces to match the boundary conditions. The au-
thors study these transitions experimentally and their experimen-
tal results suggest a largely uniaxial profile wherein the molecules
exhibit a single distinguished direction of molecular alignment
and this direction is referred to as being the director in the liter-
ature [1]. The authors present experimental measurements for the
optical profiles and flow fields and their experimentalwork is com-
plemented by a numerical analysis of the nematodynamic equa-
tions in the Beris–Edwards theory [10]. The Beris–Edwards theory
is one of the most general formulations of nematodynamics, that
accounts for both uniaxial and biaxial systems (with a primary
and secondary direction of molecular alignment) and variations
in the degree of orientational order. The authors numerically re-
produce the experimentally observed flow transitions, the director
and flow-field profiles, all of which are in good qualitative agree-
ment with the experiments.

In Anderson et al. [11], the authors model this experimental
set-up within the Leslie–Ericksen model for nematodynamics.
Their Leslie–Ericksen model is restricted to uniaxial nematics with
constant ordering (a constant degree of orientational order) [5].
They present governing equations for the flow field and the
nematic director field along with the constitutive relations that
describe the coupling between the director and the flow field (see
Appendix A for details) and assume that all dependent variables
only vary along the channel depth, with a unidirectional flow
along the channel length, consistent with the experiments. These
assumptions greatly simplify the mathematical model, yielding a
decoupled system of partial differential equations for the director
field, which captures the flow dynamics through a single variable:
the pressure gradient, G, along the channel length. The authors
define two separate boundary-value problems: one for weak-flow
solutions and one for strong-flow solutions, described by two
different sets of boundary conditions for the director field. They
find weak- and strong-flow solutions for all values of the pressure
gradient and they relate the resulting flow profile to themean flow
speed by a standard Poiseuille-flow-type relation. The energy of
the weak-flow solution is lower than the strong-flow solution for
smallG and there is an energy cross-over at some critical value,G∗,
that depends on the anchoring strength at the channel surfaces.
Recently, Batista et al. [12] undertook a comprehensive study
of the interplay between the pressure gradient and anchoring
conditions on the transition between the weak-flow and strong-
flow solutions, which they related to a discontinuity in the mass
flow rate function.

In this paper, we build on the work in Anderson et al. [11] by
performing an extensive study of the static solution landscape,
complemented by some numerical investigations of the dynam-
ical behavior, as the system evolves to these equilibrium config-
urations. We adopt the same model with the same underpinning
assumptions as in Anderson et al. [11], but we do not define two
separate boundary-value problems. We impose weak anchoring
conditions for the director field on the top and the bottom surfaces
since it includes both the weak and strong anchoring configura-
tions and allows us to capture the competition between the flow
field and the anchoring strength. In Bevilacqua et al. [13], the au-
thors adopt a similar approach to study the competition between
themagnetic field and the anchoring strength on static equilibrium
profiles, described by critical points of a suitably defined energy.

We compute the static equilibrium solutions, using a combi-
nation of analytic and numerical methods, as a function of G and
the inverse anchoring strength B. The case G = 0 is analytically
tractable and we identify two different classes of solutions and
characterize their stability. This is complemented by an asymp-
totic analysis in the limits G → 0 and G → ∞, with the lat-
ter regime yielding useful information about the boundary layers
near channel surfaces, which are experimentally observed in the
strong-flow regimes [3]. We then study the solution landscape for
G ≠ 0 and track the stable and unstable solution branches as a
function of (G, B). Ourwork largely focuses on the static equilibria
but the last section is devoted to a numerical study of the dynamic
Leslie–Ericksen model and its sensitivity to the initial condition. In
particular, we present a numerical example for which we can con-
trol the final steady state bymanipulating the rate of change of the
pressure gradient and anchoring conditions.

The paper is organized as follows. In Section 2, we present
the Leslie–Ericksen dynamic model, the governing equations and
boundary conditions. In Section 3, we explore the static solution
landscape as a function of the pressure gradient and anchoring
strength. In Section 4, we study the dynamic model, with focus
on the effects of initial conditions and the time-dependent forms
of the pressure gradient and anchoring strength, and conclude
in Section 5 by putting our work in context and discuss future
developments.

2. Mathematical model

As in Anderson et al. [11], we model the NLC within the mi-
crofluidic channel in the Leslie–Ericksen framework. The chan-
nel has dimensions, Lx̂ ≫ Lŷ ≫ Lẑ , in the x̂, ŷ and ẑ directions
respectively, consistent with the experimental set-up in Ander-
son et al. [11] and Sengupta et al. [3] The NLC is purely uniax-
ial with constant order parameter, by assumption, and is hence
fully described by a director field, n, that represents the single pre-
ferred direction of nematic alignment. Here, n and −n are phys-
ically indistinguishable (in the absence of polarity the sign of n
has no physical meaning). We additionally assume that all depen-
dent variables only depend on the ẑ-coordinate, along the channel
depth, as depicted in Fig. 1. Then the director field is of the form
n = (sin(θ(ẑ, t̂)), 0, cos(θ(ẑ, t̂))) and the velocity field is unidirec-
tional, of the form v = (û(ẑ, t̂), 0, 0), with−h ≤ ẑ ≤ h. Sincen and
−n are indistinguishable, θ and θ + kπ , k ∈ Z, describe the same
director profile. We assume that û(ẑ, t̂) is symmetric around the
center-line (i.e. around ẑ = 0) and no-slip conditions are imposed
on the channel walls (i.e. û(±h, t̂) = 0). We assume weak anchor-
ing boundary conditions for θ on ẑ = ±h, that can be derived from
the well-known Rapini–Papoular weak-anchoring energy [14],

ES =


ẑ=±h

A
2
sin2 θ dx̂ dŷ,
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