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h i g h l i g h t s

• One-dimensional models of filaments and membranes adhering to periodic substrates are studied.
• The effects of bending and adhesion are taken into account.
• Whether global minimizers are graphs or overhanging is mainly considered.
• Ranges of characteristic parameters ensuring the presence and absence of overhangs are obtained.
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a b s t r a c t

This papermathematically studiesmembranes and filaments adhering to periodic patterned substrates in
a one-dimensionalmodel. The problem is formulated by theminimizing problemof an elastic energywith
a contact potential on graph substrates. Global minimizers (ground states) are mainly considered in view
of their graph representations. Our main results exhibit sufficient conditions for the graph representation
and examples of situations where any global minimizer must overhang.
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1. Introduction

The figuration of elastic bodies is complicated to comprehend,
in particular, if external factors and constraints are taken into con-
sideration. This paper is devoted to a theoretical study of slender
elastic bodies adhering to solid substrates.

The contact and adhesion problems between soft objects and
solid substrates appear in various contexts. For example, com-
plex adhesion patterns are observed when soft nano-objects, as
graphene [1,2] or carbon nanotubes [3], are sheeted on rough pat-
terned substrates. The adhesion property is also known for vesicles
(cf. [4]). More broadly, in contact mechanics [5], it is a central
question to ask how elastic bodies contact rough substrates [6,7].
This question is relevant for many motivating problems as rubber
friction [8] or adhesion in biological systems as geckos [9–11].
Recently, there are remarkable progresses in ‘‘elasto-capillary’’
problems [12]. The elasto-capillary problems essentially relate to
our problem in the sense that they are focused on the competition
between elasticity and adhesiveness.
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1.1. Our model

This paper mathematically studies the adhesion problems of
filaments and membranes in a one-dimensional setting, as in [13].
To be more precise, we consider the minimizing problem of the
energy

E[γ ] =

∫
γ

ds
[
C
2
κ2(s) + σ (γ (s))

]
(1.1)

defined for planar curves γ . Here κ and s denote the curvature
and arc length parameter, respectively. Admissible curves γ (cor-
responding to elastic bodies) are constrained in the upper side of
a given λ-periodic substrate function ψλ as in Fig. 1. The constant
C > 0 corresponds to the bending rigidity. The contact potential σ
is defined as σ = σF in the free part and σ = σB in the bounded
part, where 0 < σB < σF are constants. The constants σB and
σF correspond to tension or surface energies. (See Section 2 for
details.)

Our energy is a simple generalization of the modified total
squared curvature, so-called Euler’s elastica energy (see [14–18]
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Fig. 1. Periodic substrate function ψ and periodic admissible curves. Admissible
curves may overhang or self-intersect.

and also [19–21]), so that an adhesion effect (contact potential)
is included. Its minimization invokes a free boundary problem of
the elastica equation, i.e., the free part of any minimizing curve
satisfies the curvature equation C(κss + κ3/2) − σFκ = 0. The free
boundary conditions are concernedwith curvature jumps (see [13]
and also [4,12,22,23]). Our model can be regarded as an elastic
version of wetting problems (cf. [24,25]).

Our model concerns only the bending modes of filaments or
membranes and neglects the stretching modes. As mentioned
in [13], the underlying physical assumptions are that elastic bodies
are sufficiently thin, vary only in one direction, and move along
substrates freely (no friction). The stretching modes should be
taken into account in fully two-dimensional models, even for thin
films without friction (see e.g. [2,26]).

1.2. Our goal

The local laws (as the elastica equation or boundary conditions)
are well-known in our model since similar models have been
widely studied (e.g. in [4,12,22,23]). The fundamental goal of this
paper is to know the whole shapes of minimizers in our model.
However, it is not realistic to determine the exact whole shapes
of minimizers for arbitrary parameters and a substrate. This paper
focuses on whether minimizers are represented by the graphs of
functions or not.

Whether minimizers are graphs or have overhangs is an impor-
tant consequence on the shapes. In fact, the absence of overhangs
guarantees that the shape of a solution is not so ‘‘complex’’, in
particular, there is no self-intersection. Conversely, the presence
of overhangs implies the possibility of self-intersections. If once
membranes or filaments self-intersect, then other mechanisms
(not taken into account in our model) may yield more complex
shapes as rackets [27–29] (see also [12]).

An a priori guarantee of the graph representation is also impor-
tant for the theoretical study. Such a guarantee rigorously justifies
the graph setting, i.e., the assumption to consider only graph curves
as admissible curves. The graph setting yields strong topological
and morphological constraints, and hence makes the analysis con-
siderably simpler. In fact, there are theoretical studies [13,30,31]
concerning the whole shapes of minimizers in ourmodel, but all of
them rely on the graph setting. The paper [13] particularly depends
on the graph setting since its analysis crucially uses the small slope
approximation.

1.3. Main results

The present paper gives the first rigorous study on the graph
representations of global minimizers (ground states). A theoretical
reason to consider only global minimizers is that the shapes of
local minimizers (metastable states) may be more complicated
even for parameters ensuring the graph representations of global
minimizers (see Section 5 for details). The assumption of global

minimality would be however appropriate for some experimental
situations, for example, thin films on substrateswithwetting fluids
at the interfaces (almost no friction) as in [26]. In addition, as a
mathematical assumption, the present paper assumes that curves
γ and a substrate ψλ have a same period λ.

To describe our results, it is convenient to recall the typical
length scale ℓ =

√
C/σF , which compares bending rigidity and

surface tension. The scale ℓ is called the elasto-capillary length
e.g. in [12,26]. As mentioned in [12,26], the scale ℓ appears as a
typical bending scale of an elastic body. We also use the length
scale r = ∥ψ ′′

λ∥
−1
∞

which is the reciprocal of the maximum of the
second derivative. The scale r roughly corresponds to the minimal
bending scale of ψλ. Moreover, the dimensionless ratio α = σB/σF
is also important since it corresponds to adhesiveness.

Global minimizers are flat in many limiting cases; dominant
bending effect (C = ∞), no adhesion (σB = σF ) or flat substrate
(ψ = 0). Hence, the graph representation is expected at least
nearly the above cases. Indeed, Theorems 3.3 and 3.4 give explicit
conditions ensuring that global minimizers must be graphs. The
first condition is described as 1 − α−1

≪ (ℓ/λ)2. In particular,
this condition is satisfied as the limits C → ∞ and σB → σF .
The second condition is described as (r/λ)2 ≫ α−1

+ (ℓ/λ)−2. In
particular, this condition is satisfied as the limit r → ∞, which
means a second order flatness of ψλ. Our proof uses only energy
arguments; we compare the energies of all non-graph curves and
special graph competitors.

On the other hand, even if ψ is smooth of class C∞, it turns out
that there are situations such that globalminimizers are overhang-
ing, i.e., not represented by graphs. The mechanism of overhangs
is involved, so we deal with only special substrates like ‘‘fakir
carpets’’ (see the figures in Section 4). Our result indicates that
the wave height length scale H and dimensionless ‘‘deviation’’
∆ := min{λ,H}/(λ+ 2H) of a fakir carpet appear as characteristic
quantities. More precisely, as a main result (Theorem 4.4), we
rigorously prove that global minimizers must overhang if ψλ is
smooth but shaped like a fakir carpet and moreover the relations
r ≪ ℓ ≪ min{λ,H} and α ≪ ∆ are satisfied. Our proof is
based on a geometric viewpoint to classify possible global states
of non-overhanging curves, and an energy estimate for each of
the cases. A special overhanging competitor is then constructed in
view of the optimal bending scale ℓ. We notice that the condition
r ≪ ℓ requires that ℓ is not arbitrary small for overhangs. However,
we also prove that if such substrates are Lipschitz (i.e., folding
singularly r = 0), then ℓ can be arbitrary small for a fixed substrate
(Theorem 4.7). To this end, we need further discussion for local
bending structure, but we still use only energy arguments.

1.4. Related mathematical results

In the rest of this section, reviewing related mathematical lit-
erature, we see that in our one-dimensional problem both the
contact potential and the total squared curvature play crucial roles
for overhangs.

There is much mathematical literature of first order energies
with contact potentials on flat substrates (see e.g. [32–35] for
graphs, [25,33] for the boundary of sets, and references therein).
The problems in the cited papers roughly correspond to our prob-
lem with C = 0 and ψλ ≡ 0 (but in higher dimensions).
In first order cases, solutions may have edge singularities at the
free boundary and the contact angle θ satisfies Young’s equation
cos θ = σB/σF . In higher dimensional cases, the contact potential
may imply the loss of graph representation even in first order
cases (cf. [34]). However, although our substrates are not flat, our
problem is one-dimensional and periodic, so the graph setting
would be still suitable while C = 0.

To our knowledge, there is little mathematical literature
of higher order problems with contact potentials except the
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