
Physica D 347 (2017) 74–89

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd

A numerical estimate of the regularity of a family of Strange
Non-Chaotic Attractors
Lluís Alsedà i Soler, Josep Maria Mondelo González, David Romero i Sànchez ∗

Departament de Matemàtiques, Edifici Cc, Universitat Autònoma de Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain

h i g h l i g h t s

• We give an algorithm to compute regularities of SNA’s based on tools of de la Llave–Petrov.
• It uses the Keller convergence construction to the attractor.
• It uses Daubechies Wavelets with 16 vanishing moments.
• The precision is two decimal digits compared with Weierstraß function.
• The loss of regularity as parameter changes is observed from wavelet coefficients.
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a b s t r a c t

We estimate numerically the regularities of a family of Strange Non-Chaotic Attractors related with one
of the models studied in (Grebogi et al., 1984) (see also Keller, 1996). To estimate these regularities we
use wavelet analysis in the spirit of de la Llave and Petrov (2002) together with some ad-hoc techniques
that we develop to overcome the theoretical difficulties that arise in the application of the method to
the particular family that we consider. These difficulties are mainly due to the facts that we do not have
an explicit formula for the attractor and it is discontinuous almost everywhere for some values of the
parameters. Concretely we propose an algorithm based on the Fast Wavelet Transform. Also a quality
check of the wavelet coefficients and regularity estimates is done.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The aim of this paper is to develop techniques and algorithms
to compute approximations of (geometrically) extremely compli-
cated dynamical invariant objects bymeans ofwavelet expansions.
Moreover, from the wavelet coefficients wewant to derive an esti-
mate of the regularity of these invariant objects. In the case when
the theoretical regularity is known, the comparison between both
values gives a natural and good quality test of the algorithms and
approximations.

In this paper the invariant objects that we study and consider
when developing our algorithms are Strange Non-chaotic Attrac-
tors. They appear in a natural way in families of quasiperiodically
forced skew products on the cylinder of the form

Fσ ,ε : S1
× R −−−−−→ S1

× R
(θ, x) −→ (Rω(θ), Fσ ,ε(θ, x)),

(1)
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where Fσ ,ε : S1
×R −→ R is continuous and C1 with respect to the

second variable, Rω(θ) = θ + ω (mod 1) with ω ∈ R \ Q, S1
=

R/Z = [0, 1) denotes the circle and ε, σ ∈ R+. These systems
have the important property that any fibre, {θ} × R, is mapped
into another fibre, {Rω(θ)} × R.

Our main goal will be to derive approximations in terms of
wavelets of the invariant maps ϕ : S1

−→ R: ϕ(Rω(θ)) =

Fσ ,ε(θ, ϕ(θ)). Under certain conditions the graphs of these
invariant maps have very complicated geometry where roughly
speaking, the word complicated means non-piecewise continuous.
In such case, we will say that the graph of ϕ is a Strange Non-
chaotic Attractor (SNA). A usual particular case of SNA is when the
invariant function is positive in a set of full Lebesgue measure and
vanishes on a residual set.

A standard approach is to use Fourier expansions (rather than
wavelet ones) when approximating dynamical invariant objects.
In the SNA’s framework this approach has a serious drawback: an
accurate approximation of ϕ demands a high number of Fourier
modes due to the appearance of strong oscillations (see e.g. [1]).
One natural way to overcome this problem is by using other
orthonormal bases such as wavelets and the multi-scale methods
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(see e.g. [2,3]). One of the advantages of this approach is that
wavelets also define certain regularity spaces Bs

∞,∞ (see e.g.
[4,2,5,6]) that provide a natural framework for the approximations
that one gets.

Precisely, the regularity can be considered as a trait of how ϕ
becomes strange in terms of functional spaces. For example, in [7],
the authors make numerical implementations of wavelet analysis
to estimate the ‘‘positive’’ regularity of invariant objects which are
graphs of functions in appropriate spaces. However, due to the
complexity of the SNAs described above we need to consider the
possibility that these objects have zero or even negative regularity
(see [2]). Hence, the techniques of [7] need to be extended to this
case. To this end, we develop ad-hoc techniques to overcome the
theoretical difficulties of the objects we study in performing a
wavelet analysis, in the same spirit of [7], to estimate the regularity
of such ϕ. Our wavelet analysis will be based on the Fast Wavelet
Transform (see e.g [3]).

The computation of the regularity (depending on parameters)
can give some insight into the study of the fractalization or other
routes of creation of SNA and help in detecting this bifurcation.

We apply the above program to a slight modification of the
system considered in [8]. Indeed, the attractor obtained in [8] (as
shown by Keller in [9]), is the graph of an upper semi-continuous
function from the circle toR in the pinched case (that is, when there
exists a fibre whose image is degenerate to a point), whereas in the
non pinched one the attractor is the graph of a map with the same
regularity as the skewproduct (see also [10,11]). Aswewill see, the
wavelet coefficients together with the computed regularity detect
well the functional space jump associated to the creation of the
SNA.

This paper is organized in two parts. The first one is devoted
to make a survey on wavelets and regularity. Whereas the second
one deals with the application of these techniques to the SNA
case. More concretely, in Section 2 we recall some topics about the
theory of wavelet bases. In Section 3 we will review the notion of
regularity through Besov functional spaces and discuss it bymeans
of simple examples. In Besov spaces the regularity can be any real
number (in contrast to Hölder regularity defined only for positive
regularities). In Section 4 we survey the relation between the
regularity and the wavelet coefficients of a function. Section 4.1 is
devoted to present and test amethodology to numerically estimate
regularities based on the previous sections.

Finally, in the second part, in Section 5 we present the family
of Strange Non-Chaotic Attractors that we will study. In particular,
we state Keller’s Theorem and we emphasize some ideas on the
proof. These ideas will be used in devising the algorithm that we
propose. In Section 6, we present the techniques to overcome the
theoretical difficulties arising from the SNA. In Section 6.3, we
perform the algorithm to compute the regularity of the attractors
and in Section 7, the results of this computation, for a particular
instance of SNA’s, are presented and discussed.

2. A survey on wavelets

We aim at approximating by means of wavelets a certain class
of functions from the circle R/Z to an interval of the real line.
Recall that a standard approach used in the literature to compute
and work with invariant objects of systems exhibiting periodic or
quasi-periodic behaviour is to use finite Fourier approximations
(trigonometric polynomials), namely functions of the form

ϕ(θ) = a0 +

N
n=1

(an cos(nθ)+ bn sin(nθ)) .

In this paper instead we aim at using finite wavelet expansions of
the form:

ϕ(θ) = a0 +

J
j=0

Nj
n=0

dj,nψj,n(θ),

where ψj,n(θ) is obtained by translation and dilation of a mother
wavelet ψ(x). To be explicit, let us start by introducing the
orthonormal wavelet basis of L 2(R). A natural way to do it is via
the notion of Multiresolution Analysis. We refer the reader to [3,4]
for more detailed and comprehensive expositions.

Definition 2.1. A sequence of closed subspaces {Vj}j∈Z of L 2(R)
is a Multiresolution Analysis (or simply a MRA) if it satisfies the
following six properties:

(a) {0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L 2(R).
(b) {0} =


j∈Z Vj.

(c) clos


j∈Z Vj


= L 2(R).
(d) There exists a function φ whose integer translates, φ(x − n),

forms an orthonormal basis of V0. Such function is called the
scaling function.

(e) For each j ∈ Z it follows that f (x) ∈ Vj if and only if f (x−2jn) ∈

Vj for each n ∈ Z.
(f) For each j ∈ Z it follows that f (x) ∈ Vj if and only if f (x/2) ∈

Vj+1. �

Before continuing the explanation, let us recall that for f ∈ L 2(R),

f (ξ) =


R
f (x)e−iξx dx, ξ ∈ R,

denotes the Fourier transform of f and f ∨(x)

f ∨(x) =
1
2π


R
f (ξ)eiξx dξ, x ∈ R

stands for the inverse Fourier transform. If we fix an MRA, it follows
that Vj has an orthonormal basis {φj,n}n∈Z, for every j, where

φj,n(x) = 2−j/2φ


x − 2jn

2j


.

Now, define the subspace Wj as the orthogonal complement of Vj
on Vj−1, that is,

Vj−1 = Wj ⊕ Vj. (2)

Therefore, by the inclusion of the spaces Vj we have

L 2(R) = clos


j∈Z

Wj


= clos


V0 ⊕

0
j=−∞

Wj


. (3)

The mother wavelet ψ ∈ W0 is defined to be the function whose
Fourier transform is

ψ(ξ) =
1

√
2
e−iξh∗(ξ + π)φ(ξ) (4)

whereh∗(ξ) is the complex conjugate of

h(ξ) =


n∈Z

h[n]e−inξ , (5)

withh(0) =
√
2 and h[n] =


1

√
2
φ
 x
2


, φ(x − n)


for n ∈ Z.

The sequence h[n] is called the scaling filter (or the low pass filter)
of the Multiresolution Analysis. We define the support of h[n],
denoted by supp(h), as the minimum subset I of Z such that I =

{ℓ, ℓ+ 1, . . . , ℓ′
} is a set of consecutive integers and

h[n] = 0 for every n ∈ Z \ I.

The following result (see [3, Theorem 7.3]) allows to obtain the
wavelet basis from the scaling function:



Download English Version:

https://daneshyari.com/en/article/5500304

Download Persian Version:

https://daneshyari.com/article/5500304

Daneshyari.com

https://daneshyari.com/en/article/5500304
https://daneshyari.com/article/5500304
https://daneshyari.com

