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h i g h l i g h t s

• An isolating block is defined around L2 in the CRTBP using convexity conditions.
• A bisection method is used to compute invariant manifolds of planar Lyapunov orbits.
• A bisection method is used to compute invariant manifolds of the spatial invariant 3-sphere.
• Computed invariant manifolds are used to approximate the invariant 3-sphere.
• The low-energy transit portal into the Earth–Moon system is computed.
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a b s t r a c t

Isolating blocks may be used as computational tools to search for the invariant manifolds of orbits and
hyperbolic invariant sets associated with libration points while also giving additional insight into the
dynamics of the flow in these regions. We use isolating blocks to investigate the dynamics of objects
entering the Earth–Moon system in the circular restricted three-body problem with energies close to the
energy of the L2 libration point. Specifically, the stable and unstable manifolds of Lyapunov orbits and
the hyperbolic invariant set around the libration points are obtained by numerically computing the way
orbits exit from an isolating block in combination with a bisection method. Invariant spheres of solutions
in the spatial problem may then be located using the resulting manifolds.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It is well known from work by Conley, Easton, and McGehee
that isolating blocks govern the behavior of transit orbits near
the L1 and L2 libration points in the circular restricted three-body
problem (CRTBP) [1–4]. This knowledge has been used in general
to aid in visualizing the flow in these regions and specifically to
assist in particular analyses such as the examination of heteroclinic
connections between periodic orbits in the CRTBP found in Koon,
Lo, Marsden, and Ross [5]. The L2 gateway in particular is key
for approach trajectories to a moon where multi-body effects
are significant, a fact that was used in Anderson and Lo [6,7].
Ren and Shan [8,9] examined the boundary of orbits transiting
through the gateway in a selected Poincaré section interior to

∗ Corresponding author.
E-mail address: rodney.l.anderson@jpl.nasa.gov (R.L. Anderson).

the secondary using a bisection method and focused on using
transit orbits as targets for optimization. They also noted that
some known invariantmanifolds fall on this boundary. Others have
previously computed trajectories approximating libration orbit
invariant manifolds by shooting trajectories toward either side of
the libration point [10,11].

By making use of some of the fundamental characteristics
of the isolating block, additional information and structures
may be obtained. Specifically, the use of isolating blocks as a
computational tool provides a means to both gain additional
insight into the problem and compute the invariant manifolds of
orbits and hyperbolic invariant sets associated with the libration
points. The spatial CRTBP is used to model the dynamics of small
masses in the Earth–Moon system, and this problem can be viewed
as a three degree of freedomHamiltonian system. The state space is
six dimensional, and the manifolds of constant Jacobi energy have
five dimensions. We investigate the dynamics of objects entering
the Earth–Moon system with energies close to the energy of the
L2 Lagrange point (on the far side of the Moon). For the planar
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problem there are unstable periodic solutions near L2, and the
stable and unstable manifolds of these orbits guide the transition
of orbits through the L2 ‘‘bottleneck’’ formedwhen the Hill’s region
opens up. For the spatial problem with fixed Jacobi energy, this
bottleneck contains a hyperbolic (unstable) invariant 3-sphere of
solutions [12,13]. Stable and unstable manifolds of this invariant
set guide the transit of orbits through the bottleneck just as in the
planar problem.

Analytic methods for studying hyperbolic invariant sets in high
dimensions are difficult to apply and are limited by issues of
convergence in the normal form transformations [14,15] that are
typically used. We introduce and use isolating blocks to locate
invariant spheres of solutions and use a bisection method to
numerically compute their stable and unstable manifolds. One
virtue of the bisection method is that it requires relatively little
analytic computation and can be implemented using numerical
methods for solving ordinary differential equations. We choose
arcs of initial conditions entering the block whose end points
exit through disjoint exit sets. Every such arc must intersect the
stable manifold of the trapped invariant set. Bisecting the arc
and maintaining the end-point conditions leads to the accurate
location of a point on the stable manifold. These points on
the stable manifold may then be used to compute trajectories
approaching the orbit or hyperbolic invariant set. Discarding
an initial segment of an orbit on the stable manifold gives an
approximation to its ω-limit set and therefore gives information
about the dynamics restricted to the invariant set itself.

2. Circular restricted three-body problem equations of motion

A useful model for point mass or asteroid motion in the
Earth–Moon system is the CRTBP in a rotating coordinate system
with the Earth (or primary mass) located at position E =

(−µ, 0, 0) and the Moon (or secondary mass) located at position
M = (λ, 0, 0) with λ = 1 − µ. The mass parameter for the
Earth–Moon system used here is µ = 1.2150584270571545 ×

10−2. The equations of motion for the point mass are

ẍ = ∂xΦ (x, y, z) − 2ẏ
ÿ = ∂yΦ (x, y, z) + 2ẋ
z̈ = ∂zΦ (x, y, z)

(1)

where

Φ (x, y, z) =
1
2
(x2 + y2) + U(x, y, z) (2)

U (x, y, z) = λ/ρ1 (x, y, z) + µ /ρ2 (x, y, z) . (3)

The functionsρ1 (x, y, z) and ρ2 (x, y, z) are the distances from the
asteroid or spacecraft to the Earth and Moon, respectively.

It is sometimes convenient to use vector–matrix notation to
represent these formulas. In that case, we use the notation q =

(x, y, z)′ where ′ indicates the transpose. Treating E,M, q, and
∇Φ (q) as column vectors, we set ρ1 = |E − q| and ρ2 = |M − q|.
The equations of motion then take the form

q̈ = ∇Φ (q) + 2Aq̇ (4)

∇Φ (q) = Fq + λ (E − q) ρ1
−3

+ µ (M − q) ρ2
−3 (5)

where

A =

0 −1 0
1 0 0
0 0 0


and F =

1 0 0
0 1 0
0 0 0


. (6)

The Jacobi Integral J =
1
2 ⟨q̇, q̇⟩− Φ(q) is a constant ofmotion for

thismodel, and the Jacobi constant, C, is defined by the equation J =

−C/2. This is a convenient choice since then ⟨q̇, q̇⟩ = 2Φ (q) − C .

For positive values of C the feasible values of q form theHill’s Region
defined by

m (C) = {q : 2Φ (q) − C ≥ 0}. (7)

The proof that the Jacobi integral is constant on solutions is
straightforward using this notation:

J̇ = ⟨q̈, q̇⟩ − ⟨∇Φ (q) , q̇⟩ = ⟨2Aq̇, q̇⟩ = 0. (8)

The Euler–Lagrange equilibrium points for the equations ofmotion
are found by setting q̈ = q̇ = 0.

As a reference, the Jacobi constants computed at each libration
point in the Earth–Moon system are

CL1 = 3.1883411054012485
CL2 = 3.1721604503998044
CL3 = 3.0121471493422489
CL4 = CL5 = 2.9879970524275450.

(9)

The Hill’s regions will be important in defining the isolating block,
and the regions corresponding to several of these Jacobi constants
are given in Fig. 1. It can be seen in these figures that as the Jacobi
constant decreases, pathways open first at L1 and then at L2. These
regions are important in defining the isolating blocks of interest
for this study. See Pollard for a more detailed explanation of the
CRTBP [16].

3. Computing invariant manifolds using isolating blocks

Isolating blocks have many theoretical uses in the study of dy-
namical systems [13,17,18]. However, their use as computational
tools as discussed heremay be new. The problem that suggests this
use is the CRTBP in three space dimensions. Invariant three dimen-
sional spheres of solutions are known to exist on five-dimensional
energy surfaceswith Jacobi constants close to those of the collinear
Lagrange points. Later we will locate and investigate these spheres
and their stable and unstable manifolds computationally.

For a smooth flow ϕ(z, t) on a smooth manifold X contained in
Euclidean space Rm, an isolating block is a compact subset B of X
having continuous forward and backward exit time functions. The
forward exit time function on B is defined by the formula

t+(b) = sup{t : ϕ(b, s) ∈ B for 0 ≤ s ≤ t}. (10)

An infinite forward exit time is allowed. The backward exit time
function is similarly defined. Exit time functions are defined on
compact sets, but they are discontinuous in general. Suppose for
some time 0 < σ < t+(b) it happens that ϕ(b, σ ) ∈ ∂B. This is
called an internal tangency, and initial points close to b may have
exit times close to σ , and thus the exit time at b is discontinuous.
If internal tangencies do not occur, then the exit time functions are
continuous [2].

A useful condition that defines a block for a smooth flow on Rm

is this: find a smooth real valued function V on Rm and a constant
c such that B = {V ≤ c} is a compact manifold with boundary
which is convex to the flow. This means that orbits that are tangent
to a point z on the boundary of B ‘‘bounce off,’’ or more precisely,
there exists δ > 0 such that ϕ(z, t) does not belong to B provided
0 < |t| < δ, ϕ(z, 0) = z. The analytic condition that insures this
convexity condition is that when

V = c and V̇ = 0, then V̈ > 0. (11)

Numerical methods that approximate solutions of autonomous
systems of ordinary differential equations use the discrete time
dynamics of maps to approximate the ‘‘flows’’ of these systems.
Time which flows (in theory) continuously in the original system
is replaced by a discrete sequence of times. A parallel theory of
isolating blocks for discrete time dynamics is available and is



Download English Version:

https://daneshyari.com/en/article/5500318

Download Persian Version:

https://daneshyari.com/article/5500318

Daneshyari.com

https://daneshyari.com/en/article/5500318
https://daneshyari.com/article/5500318
https://daneshyari.com

