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h i g h l i g h t s

• Near-critical behavior of systems on time-dependent spatial domains is explored.
• Convective and dilution effects due to domain flow are studied.
• An amplitude equation governing pattern formation on time-dependent domains is derived.
• Phase slip phenomena are analyzed with both local and global stability analyses.
• A nonlinear phase equation describing the approach to a phase-slip event is derived.
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a b s t r a c t

We explore near-critical behavior of spatially extended systems on time-dependent spatial domains with
convective and dilution effects due to domain flow. As a paradigm, we use the Swift–Hohenberg equation,
which is the simplest nonlinear model with a non-zero critical wavenumber, to study dynamic pattern
formation on time-dependent domains. A universal amplitude equation governing weakly nonlinear
evolution of patterns on time-dependent domains is derived and proves to be a generalization of the
standard Ginzburg–Landau equation. Its key solutions identified here demonstrate a substantial variety
– spatially periodic states with a time-dependent wavenumber, steady spatially non-periodic states, and
pulse-train solutions – in contrast to extended systems on time-fixed domains. The effects of domain flow,
such as bifurcation delay due to domain growth and destabilization due to oscillatory domain flow, on the
Eckhaus instability responsible for phase slips in spatially periodic states are analyzed with the help of
both local and global stability analyses. A nonlinear phase equation describing the approach to a phase-
slip event is derived. Detailed analysis of a phase slip using multiple time scale methods demonstrates
different mechanisms governing the wavelength changing process at different stages.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. General setting

In the present work we consider pattern formation in a general
evolution system on a time-dependent domain x ∈ Ωt :

∂c
∂t

+ ∇ · (u c) = Lxc + N(c), N(0) = N ′(0) = 0, (1)

resulting from the application of a conservation law to a given
quantity c such as a concentration (or concentrations if (1) is a vec-
tor equation). Here Lx is a constant coefficient time-independent
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differential operator in the spatial variable x (in the case of a reac-
tion–diffusion system Lx = D∇

2, for example); N(c) is a general
nonlinear differential operator, whichmay originate from the non-
linear part of the reaction law; u(t, x) is the velocity of a spatial do-
main point at location x at time t . The evolution of the quantity c is
considered on a time-deforming domainΩt , which can be thought
of as a ‘substrate’: examples include reaction–diffusion on growing
skin, crown spike structure on a growing circular rim in the drop
splash phenomenon, waves in a stretching rod, etc. [1]. The time-
deformation of the domain Ωt , which may be finite or infinite in
spatial extent, introduces an advection term, u ·∇c , corresponding
to elementary volumes moving with the flow u(t, x) due to local
domain deformation and a dilution term, c ∇ · u, corresponding to
local volume change.

In addition to this Eulerian interpretation, it is instructive to
look at the local flow u(t, x) from a Lagrangian description point
of view. Suppose the point x in the domain Ωt moves according
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to the trajectory x = X(t, a) ∈ Ωt , where a is an initial
position (point label or a Lagrangian coordinate), i.e. X(0, a) =

a. The local flow is then fully determined by u(t, x) = ∂X/∂t ,
where the partial derivative is evaluated at constant a, i.e. a fixed
marker for the given trajectory. We mention two key examples
of domain deformation—for a more detailed discussion the reader
is referred to [1]. First, isotropic growth, which in one spatial
dimension corresponds to X(t, a) = a r(t) with r(0) = 1 and
a ∈ [−L0/2, L0/2], implies

u(t, x) = a ṙ = x
ṙ
r

= x
L̇
L

≡ f (t) x, (2)

where L(t) = L0r(t) is the domain length at time t; the function
f (t) ≡ L̇/L will be used throughout the rest of the paper.
Thus the velocity u of stretching depends on the location away
from the stationary center x = 0 with maximum speed at the
domain boundaries u|x=±L(t)/2 = ±L0 ṙ/2 = ±L̇/2. Note that
the flow becomes a function of space only, u = u(x), when the
domain grows exponentially: r ∼ eα t , α > 0. Pattern formation
on exponentially growing domains was studied numerically in a
number of papers, e.g. [2–6]. If each point of the domain oscillates
periodically with period T , then X(t, a) = X(t + T , a) for all t and
the flowu(t, x) is called oscillatory—physically thismay correspond
to jittering endpoints of the domain (in opposite directions).When
all points of the domain move with the same speed u = u(t),
the domain is simply translated and no stretching takes place—
therefore, in what follows we only consider flows u depending
on the spatial coordinate x (and perhaps time). An important
special case is that of uniform growth of a spatially periodic domain
studied in [7], corresponding to a one-dimensional domain that
stretches at the same rate everywhere—because the domain does
not have endpoints, each cross-section remains at rest and u ≡ 0
everywhere. This is the case, for example, during the process of
crown formation in the drop splash problem [7], when the dilution
effect is neglected.

1.2. Motivation and key questions

The present study is motivated by the need to understand do-
main flow (convection and dilution) effects on near-critical behav-
ior and in particular on the Eckhaus instability in various physical
systems. The Eckhaus instability is the key instability that permits a
system exhibiting a periodic structure with a characteristic length
scale to adjust to a growing domain by nucleating new wave-
lengths to maintain the characteristic scale of the pattern. To date,
most knowledge in this area is based on experiments or numeri-
cal simulations, as illustrated bymodels of morphogenesis, e.g. [2–
4,8,9]. Reaction–diffusion systems have been studied numerically
on domains with both isotropic (including exponential) [2,4,6]
and nonuniform [8] growth, revealing growth via wavelength-
doubling. In [2] the flow term in Eq. (1) was neglected, thereby
rendering the system analogous to translation-invariant systems
with periodic boundary conditions [7]. Given the wealth of obser-
vational data, there is a need for a simple theory testing the basic
mechanisms governing structure growth. One approach, based on
a reduction of PDEs to ODEs, was proposed in [4] for domains with
isotropic growth, but it does not seem to have the same clarity as
the classical Eckhaus instability analysis [10]. Other known results
about stability on time-dependent domains include the assertion
that if the flow u is divergence-free the conditions for a diffusion-
induced (Turing) instability remain unchanged from those for the
time-independent case [9].

Given that fundamental understanding of stability properties
on time-dependent domains is currently in a rudimentary state,
in the present work we address basic questions centered around
the effect of the flow u(t, x) on pattern formation in near-critical
systems, in particular:

• Is there a universal near-critical amplitude equation similar
to the Ginzburg–Landau equation (GLE) on time-independent
spatial domains?

• Howmay the spatial structure of solutions be affected by time-
evolution of the domain?

• What are the mechanisms by which the pattern wavelength
(number of cells) changes and what is the nature of the
boundary separating the basins of attraction of solutions with
different number of cells as comparedwith the standard case of
Eckhaus instability [11,12]?

The discussion below parallels the corresponding theory for
patterns on time-independent domains [11,12] although the
results demonstrate substantial differences arising from the
presence of the domain flow u(t, x).

2. Amplitude equation

2.1. Problem statement and basic observations

Weseek to understand the effects of domain growth on systems
displaying spatially periodic structures. In reaction–diffusion
systems of the form (1) this is only possible in coupled equations,
i.e. when c is a vector of at least two concentrations [13].
We therefore turn to a generic scalar equation of fourth order
exhibiting an intrinsic length scale, the Swift–Hohenberg equation
(SHE)

ct + (u c)x = µ c − (∂2
x + k20)

2 c + N(c), (3)

where x ∈ [−L(t)/2, L(t)/2] and L = L0 at t = 0. Fig. 1 shows the
space–time evolution in the complex case with N(c) = −|c|2 c
resulting from an initial condition in the form of a stationary
solution on a time-independent domain. The domain is assumed
to be growing isotropically as described by Eq. (2). The figure
reveals that new wavelengths are continuously injected in order
to maintain a state with an intrinsic length scale of order 2π/k0.
The advantage compared with a system of reaction–diffusion
equations (1) is that both the bifurcation parameter µ and the
intrinsic wavenumber k0 appear explicitly, thereby making the
derivation more compact without affecting the generality of the
resulting amplitude equation—the same equation can be arrived
at starting from a general near-critical system with k0 ≠ 0. In fact,
the SHE (3) can be reduced to a vector reaction–diffusion form by
introducing an auxiliary variable c ′

= (∂2
x + k20)c as noted in [12],

so that (1) becomes an algebraic–differential system in which the
variable c ′ evolves on a much faster time scale compared to that of
the master mode c.

Eq. (3) is considered on a finite domain whose length L(t)
is assumed to be large enough to contain many wavelengths
2π/k0 of the primary instability in the time-independent case.
The wavenumber k0 sets the intrinsic length scale of the problem,
even though the primary instability leads to states with a time-
dependent wavenumber k(t), with k(0) = k0 corresponding to
L(0) = L0 at t = 0—this will become clear once we set the details
of the flow u(t, x). As justified by the choice of the modulational
scaling below, the departure of k(t) from k0 is assumed to be small
and to evolve on slow time and spatial scales. Thus, without loss of
generality,we ‘delegate’ this departure from k0 to themodulational
wavenumber k(t) − k0, i.e. the wavenumber set by the solution of
the amplitude equation.

Before deriving the amplitude equation, it is helpful to scale the
spatial coordinate with respect to the domain size L(t), x → L(t) x.
In the case of isotropic growth (2) we obtain

ct = [µ − f (t)] c −


1

L2(t)
∂2
x + k20

2

c + N(c), (4)

where x ∈ [−1/2, 1/2]. Thus isotropic domain growth has
two main effects on the dynamics: it modifies the bifurcation
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