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h i g h l i g h t s

• A generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed.
• Heat wave propagations are investigated systematically in nonequilibrium steady states.
• The phase (or front) speed of heat waves is intimately related to the nonlinear and nonlocal terms.
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a b s t r a c t

Heat transport may behave as wave propagation when the time scale of processes decreases to be
comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat
transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the
Cattaneo–Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame
of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady
states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves
is obtained through a perturbation solution to the heat differential equation, and found to be intimately
related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium
states are devised to measure the coefficients in the generalized equation, which may throw light on
understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Heat waves contribute to heat transport in fast processes
besides the usual diffusive transport described by Fourier’s law,
and on the other hand, they may provide new experimental tools
for the analysis of physical systems [1–10]. Recent investigations of
heat transport in carbonnanotubes [11–13] and in graphene sheets
or nano-ribbons [14–16] have declared the role of several non-
Fourier features, related to a combined heat transfer in diffusive
form and in form of heat waves. For instance, in Ref. [14] the
authors studied the effects of a rapid cooling of four layers of
carbon atoms at one end of a graphene nano-ribbon,which leads to
rapid propagation of thermal perturbation, especially at the early
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period. They observed temperature responses described by the
following generalized heat transport equation:
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with α the thermal diffusivity, and τq and τθ two phase lags. In
particular, they found τq = 1.85 ps, τθ = 1.01 ps and α =

1.44 × 10−5 m2/s for a ribbon of length 14.9 nm. Although these
values are very small, they aremeasurable by current experimental
techniques. This work is mentioned as an example of generalized
heat transport equations not only beyond Fourier’s law (τq =

τθ = 0) but also beyond Cattaneo–Vernotte (C–V) law [17,18]
(τθ = 0), one of the well-known equations in the description of
heat waves [1,7]. The need to go beyond C–V law in the analysis
of actual fast thermal processes motivates the current interest in
exploring generalized heat transport equations.

In the present work, a generalized heat transport equation is
proposed, which incorporates nonlinear and nonlocal terms into
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the C–V law. It sums up many previous macroscopic models for
nanoscale heat transport [9] as special cases, allowing a compari-
son between their respective physical consequences in the propa-
gation of heat waves. Usually, heat wave propagation was studied
around equilibrium states [11–16,19–22]. Propagation of heat
waves in nonequilibrium steady states has been only considered
for some particular cases [23–28]. However, the nonlinear terms
often neglected in generalized heat transport models have an in-
timate relevance to wave propagation in nonequilibrium steady
states [26–28]. Thus the present work generalizes much the few
previous works on this issue, and gives rise to some new features
of heat waves along nonequilibrium steady states based on the
proposed generalized equation. In addition, nanotechnology opens
new perspectives to this problem, because it becomes possible to
study the speed of thermal perturbations along carbon nanotube or
graphene ribbons with their ends kept at different temperatures,
thus imposing a controlled non-vanishing average heat flux along
them.

The remainder of this article is organized below. In Section 2,
the generalized heat transport equation is introduced, with a
summary of how one may recover from it diverse heat transport
equations of existing macroscopic models. Besides, the kinetic
theory and thermodynamic foundations are also discussed for the
generalized heat transport equation. In Section 3, the influences
of nonlinear and nonlocal terms in the generalized equation are
systematically studied on the phase speed of heat waves or front
speed of heat pulse perturbations around nonequilibrium steady
state. In Sections 4 and 5, discussions and concluding remarks are
made.

2. A generalized heat transport equation

A generalized heat transport equation including nonlinear and
nonlocal terms as well as a relaxation term is proposed as:

τ
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+ m4∇
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where τ is the relaxation time of heat flux, λ is the thermal
conductivity, and mi(T ) (i = 1, 2, . . . , 7) are temperature
dependent coefficients to be identified below. In physical views,
the main motivation in incorporating these terms originates in the
analysis of nanosystems, where the spatial gradients of physical
quantities such as temperature and heat flux may be extremely
large due to the minute size of the system. On the other hand, the
temporal derivative of heat flux may be extremely high in the fast
local heating of a sample by intense and narrow laser beams. Eq. (2)
contains particular cases of many previous macroscopic models
for nanoscale heat transport, and provides a common ground for
a comparison between them.

To recover the classical Fourier’s law, all the terms in τ and mi
are vanishing whereas for the C–V law only the relaxation term is
kept. The coefficientsmi are identified through comparing Eq. (2) to
the heat transport equations respectively in dual-phase-lag (DPL)
model [10]:
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with τq, τT the phase lags of heat flux and temperature gradient,
in Guyer–Krumhansl (G–K) model [29] (phonon hydrodynamics
model [30]):
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with l2 = τNτRv
2
g/5, τN, τR the relaxation times of phonon normal

(N) and resistive (R) processes and vg the average phonon group

speed, in the nonlinear G–K model [28]:
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with CV the heat capacity per unit volume, and in the thermon gas
model [31,32]:
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with τT the relaxation time of thermon gas. Note that to
recover Eq. (3) in the DPL model, the energy balance equation is
supplemented [6]:

CV
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= −∇ · q, (7)

and the mixed partial derivative of temperature in Eq. (3) is
reformulated as:
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The relations between the coefficients in Eq. (2) and those in
the previous heat transport models are thoroughly summarized
in Table 1. Besides, the terms in Eq. (2) with coefficients m3
and m7 not explicitly correlated to previous models could be got
from a nonequilibrium temperature θ dependent on heat flux. The
nonequilibrium temperature is obtained in extended irreversible
thermodynamics as θ−1

≡ ∂s/∂u with s ≡ s (u, q) a generalized
entropy dependent on u and q, and becomes [6]:
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Substitution of Eq. (9) into an extended Fourier’s law q =

−λ∇θ with an approximation θ ≈ T + ξ (T ) q2 (ξ (T ) ≡
1
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Thus the coefficients are identified as: m7 = −λ∂ξ/∂T , and
m3 = −λξ . The terms inm3 andm7 could be logically incorporated
as additional terms into the nonlinear G–K model equation (5)
through the temperature gradient term, but usually they are not
considered for simplicity because of their negligible effect.

Therefore the generalized heat transport equation (2) contains
in a compact way the heat transport equations of diverse previous
macroscopic models. Furthermore, these terms with coefficients
mi in Eq. (2) are notmerelywritten in a phenomenologicalway, but
actually deeply rooted in the kinetic theory of phonons [33,34]. The
following heat transport equation has been derived from phonon
Boltzmann equation by either maximum entropy [35] or Grad’s
type [36] moment methods and Chapman–Enskog expansion
within zeroth-order approximation [9,37]:
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where the deviatoric part of the tensor qq denotes ⟨qq⟩ =

qq −
1
3q

2I, with I the unit tensor. For relatively small heat flux
(q/vgCV T ≪ 1), Eq. (11) is approximated as:
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