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h i g h l i g h t s

• Amplitude death in high-dimensional maps with delayed connections is analyzed.
• Several sufficient conditions for instability are obtained.
• Necessary conditions for stability are provided.
• These conditions and a concept of convex direction lead to a design procedure.
• These analytical results are confirmed numerically.

a r t i c l e i n f o

Article history:
Received 27 July 2015
Received in revised form
9 May 2016
Accepted 28 July 2016
Available online 4 August 2016
Communicated by G. Stepan

Keywords:
Time delay
Amplitude death
Map networks
Delay connections
Design procedure
Convex direction

a b s t r a c t

The present paper studies amplitude death in high-dimensionalmaps coupled by time-delay connections.
A linear stability analysis provides several sufficient conditions for an amplitudedeath state to beunstable,
i.e., an odd number property and its extended properties. Furthermore, necessary conditions for stability
are provided. These conditions, which reduce trial-and-error tasks for design, and the convex direction,
which is a popular concept in the field of robust control, allow us to propose a design procedure for system
parameters, such as coupling strength, connection delay, and input–output matrices, for a given network
topology. These analytical results are confirmed numerically using delayed logistic maps, generalized
Henon maps, and piecewise linear maps.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A considerable number of studies have examined various phe-
nomena in coupled continuous-time nonlinear oscillators [1–4]
and coupled discrete-time nonlinearmaps [5,6]. These phenomena
are roughly classified into two types: weak- and strong-coupling
induced phenomena. For weak coupling, the phases of coupled
oscillators are governed by simple phase dynamics [7,8], and for
strong coupling, their amplitudes are influenced by connections.
Amplitude death, a phenomenon that occurs with strong coupling,
has been widely investigated both analytically and experimen-
tally [9,10]. This phenomenon is defined as a stabilization of un-
stable fixed points embedded within continuous-time nonlinear
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oscillators with diffusive connections. As this phenomenon can
suppress oscillations, it has potential use in the avoidance of unde-
sired oscillations for practical coupled systems [11–13]. However,
diffusive connections, the most popular connections, never induce
amplitude death in identical oscillators [14,15]. This fact is consid-
ered a drawback in terms of utilization of amplitude death.

It is well known that at least three types of connections can
overcome this drawback: time-delay [16,17], dynamics [18–20],
and conjugate connections [21]. Among these connections, there
has been a gradual accumulation of analytical and experimental
knowledge on time-delay induced amplitude death [16,17,22–25]
because the transmission delays of information signals passing
through connections [26,27] are ubiquitous in real situations.
Many studies have examined time-delay induced death of coupled
continuous-time oscillators [9,10]. Conversely, there have been
several efforts to deal with amplitude death in coupled discrete-
time maps.
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Time-delay-induced amplitude death of coupled discrete-time
maps was reported in 2003 [28]. That study provided analytical
results on death in a pair of high-dimensional maps with a delayed
connection. The results are summarized as follows: (a) death
cannot occur with no-delay connections; (b) the odd number
property [15] exists even in a pair of high-dimensional maps;
and (c) death cannot occur even with delay connections in a pair
of one-dimensional maps. Result (b) was extended to a simple
ring lattice [29]. Atay and Karabacak analytically investigated
amplitude death in one-dimensional map networks with uniform
delay time [30]. Masoller and Martí found amplitude death in
one-dimensional map networks with non-uniform delay time [31],
and the results were investigated analytically and numerically
in detail [32–35]. However, few studies have attempted to deal
with high-dimensional map networks [36] because it is not easy to
analytically investigate their stability.

This study considers amplitude death in high-dimensional map
networks with uniform delay time. We can deal with complex net-
work topologies in the same manner as a simple topology. It is
shown that the linear stability of amplitude death is governed by
a characteristic equation with topology parameters. The charac-
teristic equation reveals that results (a) and (b) in the previous
study [28] for a pair of maps remain even for map networks. As
the number of topology parameters is equivalent to that ofmaps in
a network, one may think that a design of connection parameters
in networks with a large number of maps is a complicated prob-
lem. However, we demonstrate that the convex direction [37], a
strong mathematical concept for robust control theory, simplifies
the design of connection parameters.We provide a systematic pro-
cedure that designs connection parameters (i.e., coupling strength
and connection delay) and the input–outputmatrices ofmaps. Fur-
thermore, result (b) is extended to reduce the number of trial-
and-error tasks in the design procedure. The analytical results are
confirmed numerically using three types of map networks, i.e., de-
layed logistic [38,39], generalized Henon [40], and piecewise lin-
ear [41,42] map networks. This paper is a substantially extended
version of our previous conference paper [36].

2. Map networks

Consider the following high-dimensional maps,
xi(n + 1) = F


xi(n)


+ bui(n),

yi(n) = cxi(n),
(i = 1, . . . ,N), (1)

where xi(n) ∈ Rm is the system state of the ith m-dimensional
map at time n ∈ Z. The input and output signals are ui(n) ∈ R and
yi(n) ∈ R, respectively. N ∈ Z+ represents the number of maps.
F : Rm

→ Rm denotes the nonlinear map, which has at least one
fixed point x∗

: x∗
= F


x∗


. The input and output matrices are

b ∈ Rm and c ∈ R1×m, respectively. Here, the input signal ui(n)
with connection delay τ ∈ Z+ and coupling strength k ∈ R is
expressed as follows:

ui(n) = k


N
l=1

εil

di
yl(n − τ)


− yi(n)


, (2)

di :=

N
l=1

εil,

where εil governs the network topology. Here, εil = εli = 1(=0)
indicates that maps i and l are (are not) connected. In addition,
self-feedback is not allowed (i.e., εii = 0). The number of maps
connected to map i is expressed by di.

Here we focus on the following spatial uniform equilibrium
state of map network (1) with connection delay (2):
x1(n)T · · · xN(n)T

T
=


x∗T

· · · x∗T
T

. (3)

The linearized dynamics of a coupled map network (1) (2) at
equilibrium state (3) is described as follows:

vi(n + 1) = (A − kbc) vi(n) + kbc
N
l=1

εil

di
vl(n − τ), (4)

A :=
∂F(x)
∂x


x=x∗

, (5)

where vi(n) := xi(n) − x∗. Here we employ the following
assumption.

Assumption 1. The fixed point x∗ of each isolatedmap is unstable,
i.e., the Jacobi matrix A is unstable. Furthermore, (A, b, c) is
assumed to be minimal.1

Linearized system (4) can be rewritten as follows:

V (n + 1) =

IN ⊗ (A − kbc)


V (n) + (E ⊗ kbc)V (n − τ), (6)

where V (n) and E are defined as

V (n) :=

v1(n)
...

vN(n)

 , E :=

ε11/d1 · · · ε1N/d1
...

. . .
...

εN1/dN · · · εNN/dN

 .

Here the matrix IN and the symbol ⊗ denote an N-dimensional
identity matrix and the Kronecker product, respectively. Note that
the stability of spatial uniform equilibrium state (3) is equal to
that of the mN-dimensional linear system (6) with delay time
τ . Substituting a solution V (n) = zna, with a nonzero vector
a ∈ RmN , into a linearized system (6) allows us to obtain its
characteristic polynomial,

Ḡ(z) := det

zImN − IN ⊗ (A − kbc) −(E ⊗ kbc)z−τ


, (7)

which can be used to investigate the stability of equilibrium state
(3). We can diagonalize the matrix IN − E using a matrix T [30,44]
as follows:

T−1(IN − E)T = diag(ρ1, . . . , ρN). (8)

Note that the eigenvalues of IN − E , i.e., ρi(i = 1, . . . ,N), satisfy

0 = ρ1 ≤ ρ2 ≤ · · · ≤ ρN ≤ 2, (9)

for any number of maps and topology [30]. This diagonalization
simplifies characteristic polynomial (7), i.e.,

Ḡ(z) :=

N
q=1

ḡ(z, ρq), (10)

ḡ(z, ρ) := d(z) + kn(z)

1 − (1 − ρ)z−τ


. (11)

Here n(z) and d(z) defined as

n(z)
d(z)

:= c(zIm − A)−1b =
cadj(zIm − A)b
det


zIm − A

 , (12)

represent the transfer function of each map (1) from ui(n) to yi(n)
around the fixed point x∗. Note that n(z) and d(z) depend only on
each isolated map (i.e., A, b, c) but not on connection (2), i.e., k, εil,
and τ . We summarize the above analytical argument as follows.

Lemma 1. The local stability of spatial uniform equilibrium state (3)
of map network (1) (2) is equivalent to the stability of the following

1 (A, b, c) is minimal if and only if they are controllable and observable [43]; they
can be easily checked numerically.



Download	English	Version:

https://daneshyari.com/en/article/5500339

Download	Persian	Version:

https://daneshyari.com/article/5500339

Daneshyari.com

https://daneshyari.com/en/article/5500339
https://daneshyari.com/article/5500339
https://daneshyari.com/

