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h i g h l i g h t s

• A PDE–ODE model that couples two active compartments is formulated and analyzed.
• Phase diagrams where anti-phase and in-phase oscillations occur are found.
• Analysis predicts a wild parameter range where stable in-phase oscillations occur.
• Our theory of bulk-mediated oscillations is extended to a periodic chain of units.

a r t i c l e i n f o

Article history:
Received 6 February 2016
Accepted 12 August 2016
Available online 1 September 2016
Communicated by S. Coombes

Keywords:
Synchrony
Quorum sensing
Spatially distributed cells
In-phase/anti-phase oscillations
Hopf bifurcation

a b s t r a c t

We formulate and analyze oscillatory dynamics associated with a model of dynamically active, but
spatially segregated, compartments that are coupled through a chemical signal that diffuses in the bulk
mediumbetween the compartments. The coupling between each compartment and the bulk is due to both
feedback terms to the compartmental dynamics and flux boundary conditions at the interface between
the compartment and the bulk. Our coupled model consists of dynamically active compartments located
at the two ends of a 1-D bulk region of spatial extent 2L. The dynamics in the two compartments is
modeled by Sel’kov kinetics, and the signaling molecule between the two-compartments is assumed
to undergo both diffusion, with diffusivity D, and first-order, linear, bulk degradation. For the resulting
PDE–ODE system,we construct a symmetric steady-state solution and analyze the stability of this solution
to either in-phase synchronous or anti-phase synchronous perturbations about the midline x = L. The
conditions for the onset of oscillatory dynamics, as obtained from a linearization of the steady-state
solution, are studied using a winding number approach. Global branches of either in-phase or anti-phase
periodic solutions, and their associated stability properties, are determined numerically. For the case of
a linear coupling between the compartments and the bulk, with coupling strength β , a phase diagram,
in the parameter space D versus β is constructed that shows the existence of a rather wide parameter
regime where stable in-phase synchronized oscillations can occur between the two compartments. By
using a Floquet-based approach, this analysis with linear coupling is then extended to determine Hopf
bifurcation thresholds for a periodic chain of evenly-spaced dynamically active units. Finally, we consider
one particular case of a nonlinear coupling between two active compartments and the bulk. It is shown
that stable in-phase and anti-phase synchronous oscillations also occur in certain parameter regimes, but
as isolated solution branches that are disconnected from the steady-state solution branch.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Individuals in a large network communicate with each other
to engage and coordinate their activities. This happens at almost
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all levels of the living world ranging from a colony of unicellu-
lar amoebae to highly sophisticated social networks of people. In
many cases, this communication is carried out through diffusive
chemicals. Examples of such kind of systems range from the signal-
ing of the amoebae Dictyostelium discoideum through the release
of cAMP into the medium [1] where it diffuses and acts on each
individual, to some endocrine neurons that secrete a hormone to
the extracellular medium where it influences the secretion of this
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hormone from a pool of such neurons [2,3], and to girls sharing a
dormitory room leading to the synchronization of their menstrual
cycles [4] presumably through the secretion of a pheromone [5,6]
in the shared space. Further examples where this kind of signaling
occurs are related to quorum sensing behavior (cf. [7–9]). In many
of these systems, the individual cells or localized units, can, under
appropriate conditions, exhibit sustained temporal oscillations. In
this way, signaling through a diffusive chemical often can switch
on and/or off the oscillations and to synchronize the oscillations
among all the individuals. The present paper is a theoretical inves-
tigation of themechanism throughwhich this kind of synchroniza-
tion occurs.

Biological rhythms are ubiquitous in living organisms, espe-
cially inmammals including human being. Some of the best known
examples are the circadian periodicity observed in the blood level
of most hormones in mammals. Many hormones also exhibit
rhythmicitywith a periodmuch shorter than the circadian rhythm.
These rhythms are referred to as the ultradian rhythms. The rhyth-
micity in these hormones often plays a fundamental role in their
physiological function. One of the best understood examples, and
the one that we are motivated by, is the pulsatile variation in the
concentration of gonadotropin-releasing hormone (GnRH) in the
portal blood that circulates from the hypothalamus to the pitu-
itary gland. This periodic signal of about one pulse per hour has
been shown to be crucial in maintaining the normal reproductive
activities inmammals [10]. It is now believed that 800–2000 GnRH
neurons are scattered in a few areas of the hypothalamus. In order
to generate a coherent pulsatile GnRH signal, such as is observed
in the portal blood, synchronization of the secretory activities of
the neurons is essential. In [11] a synchronization mechanism was
proposed, whereby neurons are coupled through GnRH secreted
into the extracellular space. Results from this model were shown
to be consistentwith in vivo experiments. The key limitation of this
model of [11], however, was that it was assumed that extracellu-
lar space was continuously stirred so as to average out any spa-
tial effects resulting from any chemical secretions. A more realistic
model, would be to couple the diffusion of GnRH in the extracellu-
lar space to the localized secretory activity of individual neurons.

These past studies are the motivation for formulating and
investigating a relatively new modeling paradigm by which
spatially segregated dynamically active units, such as cells or
localized signaling compartments, communicate with each other
through a signaling molecule that diffuses in the bulk medium
between the active units. In our model that couples dynamically
active compartments through a diffusive chemical signal, we
will focus on the case where each compartment is a conditional
oscillator. This term is adopted here to refer to a dynamical system
that stays at a stable steady state when isolated from others, but
is capable of generating sustained oscillations with some different
choice of parameter values. Dynamics of the signal in extracellular
space, referred to as the bulk region, is described by a simple
diffusion equation, with diffusivity D, that undergoes first-order
linear bulk degradation. Each compartment is capable of sensing
the strength of the signal, through either a linear or nonlinear
couplingwith the bulk, and responding to it by adjusting the rate of
release of the signaling molecules into the bulk. The release of the
signal by each compartment into the bulk region is modeled as a
flux boundary condition at the interface between the compartment
and the bulk.

In Section 2 we formulate such a 1-D model on 0 < x < 2L,
which consists of a PDE–ODE system that couples diffusion in the
bulk 0 < x < 2L, with constant diffusivity D, to compartmen-
tal dynamics with Sel’kov kinetics on the boundaries x = 0 and
x = 2L. The particular choice of Sel’kov kinetics, as originally
used in [12] for modeling glycolysis oscillations, leads to a unique
steady-state solution of the coupled system. The qualitative be-
havior of bulk-mediated oscillatory dynamics, as predicted from

the spectral properties of the linearization, will be very similar
for other choices of the compartmental kinetics where a unique
steady-state occurs (see Section 6 for a further discussion of this
issue). For a related PDE–ODEmembrane–bulk system the numer-
ical study of [13] has revealed the possibility of stable synchronous
dynamics under Fitzhugh–Nagumo reaction-kinetics in the com-
partments. However, in [13], the coupling of the membrane to the
bulk is different than for our Sel’kov model formulated in (2.1) in
that in [13] it was assumed that both the compartment and bulk
concentrations are identical at the two membranes.

For our compartment–bulk model with Sel’kov kinetics, in Sec-
tion 3 we consider the case where there is a linear coupling be-
tween the two compartments at x = 0 and x = 2L and the bulk,
where β represents the strength of this coupling. For this linearly
coupled model, we construct a steady-state solution that is sym-
metric about the midline x = L. In Section 3.1 we then derive a
transcendental equation for the eigenvalue parameterλ associated
with the linearization of the coupled compartment–bulk model
around the symmetric steady-state solution. In our stability the-
ory, we must allow for perturbations that are either symmetric or
anti-symmetric about themidline, which leads to the possibility of
either in-phase synchronous or anti-phase synchronous instabili-
ties in the two compartments. To determine unstable eigenvalues
of the linearization, in Appendix B we use the winding number of
complex analysis to determine the number of roots in Re(λ) > 0 to
the transcendental equation for the eigenvalue. This linear stability
analysis is supplemented by the numerical computation of global
branches of periodic solutions, either in-phase or anti-phase, that
bifurcate from the symmetric steady-state solution branch. These
global solution branches, together with their stability properties,
are determined using the numerical bifurcation software package
XPPAUT [14] after first spatially discretizing the PDE–ODE system
into a relatively large system of ODEs. In this way, a phase-diagram
in theD versusβ parameter space, characterizing the regionwhere
stable in-phase and anti-phase oscillations between the two com-
partments can occur is obtained. Our results show that there is
a rather large parameter range where either stable in-phase or
anti-phase oscillations occur. Full numerical computations from
a method-of-line approach of the PDE–ODE system of coupled
compartmental-bulk dynamics are used to validate the theory.

In Section 4 we illustrate oscillatory compartmental dynamics
for a specific type of nonlinear coupling between the bulk and
the two compartments, for which the steady-state solution is
the same as that for the uncoupled compartmental dynamics.
For this model, no Hopf bifurcations can occur along the steady-
state solution branch. Nevertheless, we show using the numerical
bifurcation software XPPAUT [14] that thismodel can still generate
compartment–bulk oscillations. More specifically, our numerical
computations show, in contrast to the case of a linear coupling
between the compartments and the bulk considered in Section 3,
that the branches of in-phase and anti-phase periodic solutions
are disconnected and do not bifurcate off the symmetric steady-
state solution branch. Our global bifurcation diagram reveals that
there is a parameter range of bistability where either stable in-
phase oscillations or stable anti-phase oscillations can co-exist
with the stable symmetric steady-state solution branch. Although
the coupled system in Section 4 is only a mathematical model, and
is not motivated by a specific biological context, the analysis does
indicate that the coupling of active compartments by bulk diffusion
can lead to disconnected global branches of periodic solutions
having a saddle–node structure. This indicates that hysteretic
behavior in the compartment–bulk oscillations can be possible as
parameters are varied. In Section 4.1 we study an extended ODE
compartmental dynamics model, closely related to the nonlinear
coupled compartment–bulk model, but where bulk diffusion is
neglected.
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