Accepted Manuscript

Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time
V.T. Nguyen

PII: \quad S0167-2789(16)30447-X

DOI: http://dx.doi.org/10.1016/j.physd.2016.09.002
Reference: PHYSD 31847

To appear in: Physica D

Received date: 28 March 2014
Accepted date: 2 September 2016

Please cite this article as: V.T. Nguyen, Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time, Physica D (2016), http://dx.doi.org/10.1016/j.physd.2016.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time

V. T. Nguyen
Université Paris 13, Sorbonne Paris Cité,
LAGA, CNRS (UMR 7539), F-93430, Villetaneuse, France.

Abstract

In this work, we study the numerical solution for parabolic equations whose solutions have a common property of blowing up in finite time and the equations are invariant under the following scaling transformation $$
u \mapsto u_{\lambda}(x, t):=\lambda^{\frac{2}{p-1}} u\left(\lambda x, \lambda^{2} t\right)
$$

For that purpose, we apply the rescaling method proposed by Berger and Kohn [9] to such problems. The convergence of the method is proved under some regularity assumption. Some numerical experiments are given to derive the blow-up profile verifying henceforth the theoretical results.

Keywords: Numerical blow-up, finite-time blow-up, nonlinear parabolic equations.

1. Introduction

We study the solution of the following parabolic problem

$$
\left\{\begin{array}{lll}
u_{t}(x, t)=u_{x x}(x, t)+g\left(u, u_{x}\right), & & \text { in } \Omega \times(0, T), \tag{1}\\
u(x, t)=0 & & \text { on } \partial \Omega \times[0, T), \\
u(x, 0)=u_{0}(x), & & \text { on } \bar{\Omega} .
\end{array}\right.
$$

where $u(t): x \in \Omega \mapsto u(x, t) \in \mathbb{R}, p>1$. The function g is given by

$$
g\left(u, u_{x}\right)=|u|^{p-1} u+\beta\left|u_{x}\right|^{q}, \quad \text { with } \quad q=\frac{2 p}{p+1}
$$

for some $\beta \in \mathbb{R}$. This equation can be viewed as a population dynamic model (see [46] for an example).
We also consider the complex Ginzburg-Landau equation,

$$
\left\{\begin{array}{lll}
u_{t}(x, t)=(1+\imath \gamma) u_{x x}+(1+\imath \delta)|u|^{p-1} u, & \text { in } \Omega \times(0, T) \tag{2}\\
u(x, t)=0 & \text { on } \partial \Omega \times[0, T) \\
u(x, 0)=u_{0}(x), & \text { on } \bar{\Omega} .
\end{array}\right.
$$

[^0]
https://daneshyari.com/en/article/5500370

Download Persian Version:

https://daneshyari.com/article/5500370

Daneshyari.com

[^0]: Email address: vtnguyen@math.univ-paris13.fr (V. T. Nguyen)

