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h i g h l i g h t s

• We study the dynamics of the spatial circular restricted three-body problem near L1.
• We describe a mechanism for Hamiltonian instability (Arnold diffusion).
• We construct orbits that ‘diffuse’ across a 3-sphere near L1.
• These orbits change significantly the amplitude of motion relative to the ecliptic.
• We provide analytical results and numerical evidence for diffusing orbits.
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a b s t r a c t

We consider the spatial circular restricted three-body problem, on the motion of an infinitesimal body
under the gravity of Sun and Earth. This can be described by a 3-degree of freedom Hamiltonian system.
We fix an energy level close to that of the collinear libration point L1, located between Sun and Earth.
Near L1 there exists a normally hyperbolic invariant manifold, diffeomorphic to a 3-sphere. For an orbit
confined to this 3-sphere, the amplitude of the motion relative to the ecliptic (the plane of the orbits of
Sun and Earth) can vary only slightly.

We show that we can obtain new orbits whose amplitude of motion relative to the ecliptic changes
significantly, by following orbits of the flow restricted to the 3-sphere alternativelywith homoclinic orbits
that turn around the Earth.We provide an abstract theorem for the existence of such ‘diffusing’ orbits, and
numerical evidence that the premises of the theorem are satisfied in the three-body problem considered
here. We provide an explicit construction of diffusing orbits.

The geometricmechanismunderlying this construction is reminiscent of the Arnold diffusion problem
for Hamiltonian systems. Our argument, however, does not involve transition chains of tori as in the
classical example of Arnold. We exploit mostly the ‘outer dynamics’ along homoclinic orbits, and use
very little information on the ‘inner dynamics’ restricted to the 3-sphere.

As a possible application to astrodynamics, diffusing orbits as above can be used to design low cost
maneuvers to change the inclination of an orbit of a satellite near L1 from a nearly-planar orbit to a tilted
orbit with respect to the ecliptic. We explore different energy levels, and estimate the largest orbital
inclination that can be achieved through our construction.
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1. Introduction

1. The instability problem in Hamiltonian dynamics. Many physical
systems that conserve mechanical energy can be modeled as
(autonomous) Hamiltonian systems. Typical Hamiltonian systems
exhibit chaotic dynamics. Integrable Hamiltonian systems – those
that can be solved by quadratures – are rare. In applications, one
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frequently encounters nearly integrable Hamiltonian systems, which
are small perturbations of integrable ones. Studying the long-term
behavior of nearly integrable Hamiltonian systemswas considered
by Poincaré to be the fundamental problem of dynamics.

An underlying question is whether the effect of small pertur-
bations averages out in the long run, or it can accumulate to large
effects. Arnold [1] conjectured that, for ‘typical’ nearly-integrable
systems, there always exist orbits that ‘diffuse’, i.e., they travel a
large distance in the phase space, for all sufficiently small pertur-
bations. A brief overview on Arnold’s diffusion problem and on
recent progress is given in Section 6 below. Many results on the
Arnold diffusion problem concern ‘generic’ classes of Hamiltonian
systems. There are only few concrete examples in the literature
where diffusing orbits can be found explicitly.
2.Model and main results. In this paper we describe a simple model
from celestial mechanics which exhibits diffusing orbits.

We also describe a general method, relying on geometric and
topological tools, that can be used to find explicitly such orbits. This
method can be applied to othermodels not considered in this paper
(see. e.g. [2]).

We consider the spatial circular restricted three-body problem
(SCRTBP), in the case of the Sun–Earth system. This models
the motion of an infinitesimal particle (satellite) relative to two
massive bodies (Sun and Earth), which are assumed to move on
circular orbits about their center of mass. In the spatial problem
the infinitesimal particle is not constrained to move in the same
plane as the massive bodies (the ecliptic plane).

This system can be described by a 3-degree of freedom
Hamiltonian system. There are five equilibrium points for the
Hamiltonian flow: three of them are of center–center–saddle type,
and the other two are of center–center–center type. In this paper
we focus on one of the center–center–saddle equilibria, referred
to as L1, which is located between Sun and Earth. (We point out
that we can carry a similar analysis on the other two equilibria of
center–center–saddle type.)

The dynamics near L1 is organized by some remarkable
geometric objects. For an energy level close to that of L1, the flow
restricted to the energy manifold has a 3-dimensional normally
hyperbolic invariant manifold (NHIM) near L1.

The NHIM is diffeomorphic to a 3-sphere, and contains many 2-
dimensional invariant tori that are closely spaced. (The existence
of families of 2-dimensional invariant tori as above can be
established, under certain restrictions on the parameters of the
model, by using the KAM theorem.) Thus, any orbit of the ‘inner
dynamics’ – the restriction of the flow to the 3-sphere – is either
confined to an invariant torus, or to one of the narrow ‘gaps’
between two invariant 2-tori that separate the 3-sphere. For each
orbit lying on such a torus the out-of plane amplitude relative to
the ecliptic is fixed, and for each orbit lying inside a gap the out-
of plane amplitude varies only very little. Thus, there are no orbits
for the inner dynamics that can ‘diffuse’ across the sphere; in other
words, it is impossible to achieve a large change of the out-of-plane
amplitude of an orbit by using only the inner dynamics. In this
sense, the inner dynamics is similar to that of an integrable system.

In order to obtain orbits that diffuse across the sphere one
has to use also the ‘outer dynamics’—along homoclinic orbits bi-
asymptotic to the 3-sphere. As it turns out, the stable and unstable
manifolds of the 3-sphere intersect transversally, yieldingmultiple
homoclinic manifolds, which consist of smooth families of homo-
clinic orbits. By following carefully selected homoclinic orbits one
can increase/decrease the out-of-plane amplitude by an amount
that is larger than the size of the gaps between the invariant tori.
We construct pseudo-orbits – obtained by repeatedly intertwining
the outer dynamics with the inner dynamics – that change the out-
of-plane amplitude by a ‘large amount ’. We then show, via a topo-
logical version of the shadowing lemma, that there exist true orbits
that follow closely those pseudo-orbits.

Our methodology combines analytical results with numerical
methods. The main analytical result is an abstract theorem
that provides the existence of diffusing orbits under verifiable
conditions. The numerical part consists of verifying the conditions
of the theorem, and of explicitly detecting diffusing orbits through
careful computations. More details are given in Section 4 below.
3. Applications. A possible application of this mechanism is
to design low cost procedures that change the out-of-plane
amplitude, relative to the ecliptic, of the motion of a satellite near
L1, from nearly zero amplitude to some ‘large’ amplitude. We also
provide practical information on how to choose the energy level of
the system in order to obtain such motions that end up near the
largest possible out-of-plane amplitude for that energy level.

Our focus on L1 can be viewed as a ‘proof of concept’. Similar
type of orbits can be designed near the other equilibrium points of
center–center–saddle type.

We also point out that in this paper we consider a relatively
narrow range of energies near that of L1. At higher energies, new
types of orbits appear – the so called halo orbits –, which are
rather useful for space mission design. In practice, it is not too
difficult to jump to the halo orbits (see [3]). At higher energies, the
dynamics restricted to the 3-sphere does no longer resemble that
of an nearly-integrable system—the Poincaré section reveals large
‘elliptic islands’ and a large ‘stochastic sea’. Hence, the underlying
dynamics is not nearly integrable, as in the case of the Arnold
diffusion problem, which is one of the motivations of our work.
In fact, the closer the energy level is to that of L1, the closer
the dynamics on the 3-sphere is to that of an integrable system,
hence the more difficult is to achieve diffusion. So in this paper we
deliberately choose to consider a more difficult problem.
4. Methodology. In his original paper [1], Arnold described a
mechanism of diffusion based on transition chains consisting of
KAM tori and transverse heteroclinic connections among them.
Such transition chains were also used in other papers, e.g., [4–10].
Other mechanisms of diffusion make use of transition chains of
secondary tori [8], or of Aubry-Mather sets [11–13].

In comparison to the works mentioned above, in this paper
we do not use transition chains formed by invariant tori or by
Aubry Mather sets. Instead, we parameterize the 3-sphere near
L1 by a system of coordinates consisting of one action and two
angle variables, – with the action variable corresponding to the
out-of-plane amplitude of the orbit about the ecliptic –, and form
transition chains of level sets of the action. These level sets are
not necessarily invariant sets, but only ‘almost invariant’. Once we
obtain a parametrization of the 3-sphere by action–angle variables,
computing level sets of the action is trivial. Consequently, our
method is computationally very cheap. In contrast, the precise
computation of KAM tori, secondary tori, or Aubry-Mather sets is
more laborious.

Wemention that transition chains of level sets of the action also
appear in [14], but they have not been numerically implemented
before.

Now we briefly explain the construction of transition chains of
action level sets. The main tool is a geometrically defined mapping
on theNHIM, referred to as the scatteringmap (see [15]). For a fixed
choice of a homoclinic manifold, follow an unstable fiber whose
foot point lies on the NHIM up to the homoclinic manifold; then
identify a stable fiber that passes through the same homoclinic
point, and follow the stable fiber up to its foot point on the NHIM;
the mapping that assigns to the foot point of the unstable fiber
the foot point of the stable fiber is the scattering map. In order for
this map to be well defined, one has to fix a suitable restriction of
the homoclinicmanifold. The resulting scatteringmap is in general
defined only on some open subset of the NHIM.

The scattering map provides a convenient way to track the
effect on the action variable of following homoclinic orbits.
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