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h i g h l i g h t s

• Computing persistent homology of phase separation patterns.
• Persistence keeps information about total mass and the stage of decomposition.
• Persistence landscapes and topological processes used for statistics.
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a b s t r a c t

Phase separation mechanisms can produce a variety of complicated and intricate microstructures, which
often can be difficult to characterize in a quantitative way. In recent years, a number of novel topological
metrics for microstructures have been proposed, which measure essential connectivity information
and are based on techniques from algebraic topology. Such metrics are inherently computable using
computational homology, provided the microstructures are discretized using a thresholding process.
However, while in many cases the thresholding is straightforward, noise and measurement errors can
lead to misleading metric values. In such situations, persistence landscapes have been proposed as a
natural topology metric. Common to all of these approaches is the enormous data reduction, which
passes from complicated patterns to discrete information. It is therefore natural to wonder what type
of information is actually retained by the topology. In the present paper, we demonstrate that averaged
persistence landscapes can be used to recover central system information in the Cahn–Hilliard theory
of phase separation. More precisely, we show that topological information of evolving microstructures
alone suffices to accurately detect both concentration information and the actual decomposition stage of
a data snapshot. Considering that persistent homology only measures discrete connectivity information,
regardless of the size of the topological features, these results indicate that the system parameters in a
phase separation process affect the topology considerably more than anticipated. We believe that the
methods discussed in this paper could provide a valuable tool for relating experimental data to model
simulations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Complicated patterns which evolve with time occur in a va-
riety of applied contexts, and quantifying or even just distin-
guishing such patterns can pose serious challenges. Over the last
decade, computational topology has emerged as a tool which on
the one hand allows for significant data reduction, while at the
same time focusing on and retaining essential connectivity infor-
mation of the studied patterns. One particularly interesting appli-
cation area is materials science, where complex evolving patterns
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are frequently created through complicated phase separation pro-
cesses. Computational topology encompasses a wide variety of
possible tools [1], and most of them in one way or another are
based on homology theory. The deeper reason for this can be found
in the inherent computability of homology, and in recent years
powerful algorithms have been devised which enable fast homol-
ogy computations for very large data sets, see for example [2,3],
as well as the references therein.

Homology has been used in a number of materials science
contexts. Earlier studies have made use of the easily computable
Euler characteristic, see for example the references in the recent
survey [4]. However, it has been pointed out that in some
situations the information retained by the Euler characteristic
is not enough to distinguish certain important pattern features.
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In contrast, the Betti numbers, which are associated with the
homology groups and will be described below, provide a finer
metric. They were used for example in [5] to relate the pattern
complexity evolution as described by averaged Betti number
evolution curves to the amount of stochasticity inherent in a
phase field model for binary phase separation in metal alloys. This
study was the first to use homology information in the context
of model validation. Based on available experimental data it was
shown that if the noise in the system is too low, the observed
Betti number evolution curves are qualitatively different from the
experimental ones. In addition, it was demonstrated in [5] that
while Betti numbers can be used to separate bulk from boundary
behavior, the averaged Euler characteristic can only describe the
boundary effects. Similar materials science studies in the context
of polycrystals can be found in [6,7]. While the first of these
papers uses homology to study the connectivity properties of
grain-boundary networks in planar sections of polycrystals, the
second paper employs Betti numbers as a means to describe the
thermal-elastic response of calcite-based polycrystalline materials
such as marble. More precisely, in [7] homological techniques
are used to characterize not only the elastic energy density and
maximum principal stress response fields in a polycrystal, but also
the respective grain-boundary misorientation distributions which
generated these response fields. It was shown that this topological
analysis can quantitatively distinguish between different types of
grain-boundary misorientations, and relate them to differences in
the resulting response fields.

In all of the applications described so far, the numerical or
experimental data is given in the form of a field, or in other words,
a real-valued function u : Ω → R defined on some domain Ω ⊂

Rd. The associated patterns are subsets of the domain Ω , and
usually created through a thresholding process. For example, after
selecting a suitable threshold θ , one can consider the sub- and
super-level sets

M±
= {x ∈ Ω : ± (u(x) − θ) ≥ 0} ,

which in some contexts are called nodal domains of u. As subsets
of Ω ⊂ Rd, the sets M± have well-defined singular homology
groups, and if the function u is sufficiently regular, these groups
can be computed precisely; see for example [8,9] for the two-
dimensional case d = 2. However, if the function u is not smooth,
or if the thresholding process involves a field created from exper-
imental or noisy data, then the above thresholding process may
not capture the correct topology of the actual underlying pattern.
Moreover, in certain applications the thresholding approach itself
might not be appropriate, for example if there is no obvious or
physically relevant choice of threshold.

An extension of the concept of homology to situations involving
noise or the lack of a clear thresholding process has been proposed
some fifteen years ago and is called persistent homology [1].While
this extension is described in more detail in the next section,
persistent homology is a dimension reduction technique which
provides a topological description of the evolution of sublevel sets
of a mapping u as a function of the thresholding level θ . It gives
rise to intervals [θ1, θ2] over which certain topological features
persist, and the length θ2 − θ1 can in some sense be viewed as a
measure of importance of the specific feature. Thus, topological
features with small interval lengths are usually considered as
‘‘noise’’ or ‘‘unimportant’’, while features with long intervals are
deemed ‘‘significant’’. Needless to say, the precisemeaning of these
notions will change from application to application. The concept
of persistent homology has already been used in a number of
materials science contexts, such as for example in the analysis of
granularmedia [10,11], in the study of protein compressibility [12],
as well as in the classification of amorphous structures [13] and

glass [14]. Efficient algorithms for computing persistent homology
are described in [1,15].

Despite the success of the above uses of computational topology
in applications, one immediate question is the extent of the
resulting dimension reduction. Through homology, patterns or
microstructures are basically reduced to a finite set of integers,
and it is therefore natural to wonder what information is still
encoded in this reduced measurement, beyond the obvious
connectivity information. It was pointed out in [16] that even
small Betti number counts, which taken in isolation do not provide
much in terms of pattern differentiation, can provide significant
information when viewed in a stochastic, i.e., averaged setting.
More precisely, it was shown in [16] that during the phase
separation process called nucleation, averaged droplet counts on
small domains give extremely precise projections for the observed
averaged droplet counts on large domains,where the droplet count
is just the zero-dimensional Betti number.

In the present paper, we demonstrate that when viewed in a
stochastic and time evolving framework, topological information
encodes considerably more than anticipated. This will be accom-
plished in the setting of instantaneous phase separation in binary
metal alloys, as modeled by the Cahn–Hilliard theory of spinodal
decomposition [17,18]. This phase separation phenomenon is ini-
tiated immediately after a high-temperaturemelt of twouniformly
mixedmetal components is quenched, i.e., rapidly cooled. Depend-
ing on the concentrations of the involved components, they will
quickly separate to form complicated microstructures which con-
tain some apparent element of randomness. Some of the result-
ing patterns in two space dimensions are shown in Fig. 1. These
patterns evolve with time, and after the initial phase separation
process a coarsening stage sets in, during which the characteristic
length scale of the patterns increases.

The first mathematical model for spinodal decomposition was
introduced by Cahn andHilliard [19,20], who proposed a nonlinear
evolution equation for the relative concentration difference u =

ρA −ρB, where ρA and ρB denote the relative concentrations of the
two components, i.e., ρA + ρB = 1. Their model is based on the
Ginzburg–Landau free energy given by

Eϵ(u) =


Ω


ϵ2

2
|∇u|2 + F(u)


dx, (1)

where Ω ⊂ Rd is a bounded domain, and the positive parameter ϵ
models interaction distance. The bulk free energy F is a doublewell
potential, which for the purposes of this paper is taken as

F(u) =
1
4


u2

− 1
2

. (2)

Taking the variational derivative δEϵ/δu of the Ginzburg–Landau
free energy (1) with respect to the concentration variable u, one
then obtains first the chemical potential w = −ϵ2∆u + F ′(u), and
then the associated Cahn–Hilliard equation ∂u/∂t = ∆w, i.e., the
fourth-order partial differential equation

∂u
∂t

= −∆

ϵ2∆u − F ′(u)


, (3)

subject to homogeneousNeumann boundary conditions for bothw
and u. Due to these boundary conditions, any mass flux through
the boundary is prohibited, and therefore mass is conserved.
We generally consider initial conditions for (3) which are small-
amplitude randomperturbations of a spatially homogeneous state,
i.e., we assume that u(0, x) ≈ µ for all x ∈ Ω , as well as

Ω
u(0, x) dx/|Ω| = µ, where we use the standard abbreviation

|Ω| =


Ω
1 dx. One can easily see that such initial conditions lead

to instantaneous phase separation in the Cahn–Hilliard equation
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