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ABSTRACT

We use persistent homology to build a quantitative understanding of large complex systems that are
driven far-from-equilibrium. In particular, we analyze image time series of flow field patterns from nu-
merical simulations of two important problems in fluid dynamics: Kolmogorov flow and Rayleigh-Bénard
convection. For each image we compute a persistence diagram to yield a reduced description of the flow
field; by applying different metrics to the space of persistence diagrams, we relate characteristic features
in persistence diagrams to the geometry of the corresponding flow patterns. We also examine the dynam-
ics of the flow patterns by a second application of persistent homology to the time series of persistence
diagrams. We demonstrate that persistent homology provides an effective method both for quotienting
out symmetries in families of solutions and for identifying multiscale recurrent dynamics. Our approach is
quite general and it is anticipated to be applicable to a broad range of open problems exhibiting complex
spatio-temporal behavior.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

We introduce new mathematical techniques for analyzing com-
plex spatiotemporal nonlinear dynamics and demonstrate their
efficacy in problems from two different paradigms in hydrody-
namics. Our approach employs methods from algebraic topology;
earlier efforts have shown that computing the homology of topo-
logical spaces associated to scalar or vector fields generated by
complex systems can provide new insights into dynamics [1-6].
We extend prior work by using a relatively new tool called persis-
tent homology [7-9].

Complex spatiotemporal systems often exhibit complicated
pattern evolution. The patterns are given by scalar or vector fields
representing the state of the system under study. Persistent ho-
mology can be viewed as a map PD that assigns to every field a
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collection of points in R?, called a persistence diagram. For a given
scalar field f: D — R, the points in the persistence diagram
PD(f) = {PDy(f)}r, encode geometric features of the sub-level
sets C(f,0) = {x € D | f(x) < 0} for all values of 6. A feature en-
coded by the point (0y, 6;) € PDy(f) represents a feature at the kth
homology level that appears in C(f, 6,) for the first time and dis-
appears in C(f, ;). Therefore, 6, and 6, are called birth and death
coordinates of this feature. The lifespan ; — 6, > 0 indicates
the prominence of the feature. In particular, features with long
lifespans are considered important and features with short lifes-
pans are often associated with noise. Thus, the persistence diagram
is a highly simplified representation of the field generating the
pattern.

The space of all persistence diagrams, Per, can be endowed with
a variety of metrics under which PD is a Lipschitz function. This
has several important implications that we exploit in this paper.
First, the Lipschitz property implies that small changes in the
field pattern, e.g. bounded errors associated with measurements or
numerical approximations, lead to small changes in the persistence
diagrams. Second, by using different metrics, we can vary our
focus of interest between larger and smaller changes in the
persistence diagrams. Moreover, by comparing different metrics,
we can infer if the changes in a pattern affect geometric features
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with longer or shorter life spans. Finally, since, applying the map
PD to a time series of patterns produces a time series in Per, the
distance between the consecutive data points in Per can be used to
quantify the average rate at which the geometry of the patterns is
changing.

As mentioned above, the dynamics of spatiotemporal systems
are characterized by the time-evolution of the patterns corre-
sponding to the fields generated by the system. However, cap-
turing these vector fields, either experimentally or numerically,
results in multi-scale high dimensional data sets. In order to ef-
ficiently analyze these data sets, a dimension reduction must be
performed. We use persistent homology to perform nonlinear di-
mension reduction from a time series of patterns to a time series of
persistence diagrams. We show that this reduction can cope with
redundancies introduced by symmetries (both discrete and contin-
uous) present in the system. In particular, this approach directly
quotients out symmetries and, thereby, permits easy identifica-
tion of solutions that lie on a group orbit. Alternative approaches
to nonlinear dimension and symmetry reduction include both the
method of slices [10] and recent advances in identifying unsta-
ble exact solutions of nonlinear partial differential equations [11].
While a detailed comparison of these methods is beyond the scope
of this paper, it is worth pointing out that the application of persis-
tent homology does not rely on knowledge of the underlying gov-
erning equations.

Separately, we also apply persistent homology to extract infor-
mation about dynamical structures in the reduced data. Character-
izing dynamics in the space of persistence diagrams cannot be done
using conventional methods (e.g., time delay embeddings), since
choosing a coordinate system in Per is currently an open prob-
lem [12]. However, since Per is a metric space, the geometry of the
point cloud X, generated by the time series of the reduced data, is
encoded by a scalar field which assigns to each point in Per its dis-
tance to X. We show how persistent homology may be applied to
describe dynamics by characterizing the geometry of X.

An outline of the paper is as follows. In Section 2 we present
a brief overview of the two fluid flows examined in this paper:
(1) Kolmogorov flow and (2) Rayleigh-Bénard convection. We note
here, for emphasis, that while persistent homology can be applied
to vector fields, it will be sufficient for this paper to focus on scalar
fields drawn from these systems (specifically, one component of
the vorticity field for Kolmogorov flow, and the temperature field
for Rayleigh-Bénard convection).

In Section 3 we discuss key issues related to the application of
persistent homology. By now, the mathematical theory of persis-
tent homology is well developed. Therefore, our main emphasis is
on the computational aspect of passing from the data to the persis-
tence diagrams. Section 4 describes the correspondence between
the geometric features of a scalar field and the points in its corre-
sponding persistence diagram. Section 5 discusses the structure of
the space Per and the properties of the associated metrics.

In Sections 6 and 7 we discuss how these metrics can be used
to analyze dynamics. First, we interpret distance between the per-
sistence diagrams representing the consecutive data points in the
time series as a rate at which geometry of the corresponding scalar
fields is changing. Second, we motivate and explain the procedure
for extracting the geometric structure of the point cloud in Per.

We close the paper by applying the developed techniques to
the following problems. In Section 8, we identify distinct classes of
symmetry-related equilibria for Kolmogorov flow. In Section 9, we
show that a relative periodic orbit for Kolmogorov flow collapses to
a closed loop in Per. Finally, in Section 10, we deal with identifying
recurrent dynamics that occur on different time scales in our study
of Rayleigh-Bénard convection flow.

2. The systems to be studied

2.1. Kolmogorov flow

For the study of turbulence in two dimensions, Kolmogorov
proposed a model flow where the evolution of a two-dimensional
(2D) velocity field u(x, y, t) is given by
Ju

1
§+ﬂu-Vu:——Vp+vV2u—oeu+f (1)
0

V.-u=0

(with 8 = 1 and ¢ = 0). In the above equation, p(x, y) is the
pressure field, v is the kinematic viscosity, o is fluid density, and
f = xsin(ky)X is the forcing that drives the flow [13]. Labo-
ratory experiments in electromagnetically-driven shallow layers
of electrolyte can exhibit flow dynamics that are well-described
by Egs. (1) with appropriate choices of § and « to capture
three-dimensional effects, which are commonly present in exper-
iments [14]. In this paper, we refer to all models described by Eqs.
(1) (including experimentally-realistic versions) as Kolmogorov
flows.

It is convenient to use the vorticity-stream function formula-
tion [15] to study Kolmogorov flow analytically and numerically.
Egs. (1), written in terms of the z-component of the vorticity field
w=(Vxu)- k, a scalar field, take the form

Baictu + pu- Vo = vV2w — aw + xk cos(ky). (2)
For the current study, we choose 8 = 0.83, v = 3.26 x
107 m?/s, ¢ = 0.063s7', p = 959 kg/m>, and A = 27 /k =
0.0254 m. We express the strength of the forcing in terms of a non-
dimensional parameter, the Reynolds number Re = ,/ ;37)2‘

Eq. (2) is solved numerically by using a semi-discrete, pseudo-
spectral method [16], assuming periodic boundary conditions in
both x and y directions, i.e.,, w(X, y) = w(x + Ly, y) = w(x,y + L),
where Ly = 0.085 m and L, = 41 = 0.1016 m are the dimensions
of the domain in the x and y directions, respectively. The vorticity
field is discretized in the Fourier space using 128 x 128 modes,
which corresponds to spatially resolving the domain on a 2D mesh
with spacing Ax = L,/128 and Ay = L,/128 in the x and y
directions, respectively. A time step of dt = 1/32 is chosen for
the temporal discretization.

It is important to note that Eq. (2), with periodic boundary
conditions, is invariant under any combination of three distinct
coordinate transformations: (1) a translation along x: T5x(x,y) =
(x + 8x,y), 6x € [0, L,]; (2) arotation by w: R(x,y) = (—x, —¥);
and (3) a reflection and a shift: D(x,y) = (—x,y + A/2). Because
of these symmetries, each particular solution to Eq. (2) generates
a set of solutions which are dynamically equivalent. Physically,
invariance under continuous translation leads to the existence of
relative equilibria (REQ) and relative periodic orbit (RPO) solutions,
in addition to equilibria (EQ) and periodic orbit (PO) solutions.

For Re = 25.43, the flow is characterized by a steady RPO;
Fig. 1(a) shows a projection, plotted using the three dominant
Fourier modes of this RPO. The RPO has a period 34.78 s and a
drift speed 1.354 x 107% m/s. The tunnel-like structure is a re-
sult of the periodic motion superposed over the slow drift along
the x-direction. For larger forcing (Re = 26.43), the flow becomes
weakly turbulent, as can be seen from the Fourier projections in
Fig. 1(b). The turbulent dynamics in this regime are of great inter-
est as the flow explores a region of the state space which contains
“weakly” unstable EQ, PO, REQ, and RPO solutions. Recent theoret-
ical advances have shown that the identification of these solutions
could aid the understanding of weakly turbulent dynamics [17].
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