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h i g h l i g h t s

• We use the persistent homology rank function to study spatial point patterns.
• The rank function is shown to be amenable to standard statistical techniques.
• We demonstrate null hypothesis testing on simulated point patterns.
• We develop a principal component analysis method for experimental data.
• PCA of rank functions is successfully applied to colloidal and sphere-packing data.
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a b s t r a c t

Persistent homology, while ostensibly measuring changes in topology, captures multiscale geometrical
information. It is a natural tool for the analysis of point patterns. In this paper we explore the statistical
power of the persistent homology rank functions. For a point pattern X we construct a filtration of spaces
by taking the union of balls of radius a centred on points in X , Xa = ∪x∈X B(x, a). The rank function
βk(X) : {(a, b) ∈ R2

: a ≤ b} → R is then defined byβk(X)(a, b) = rank (ι∗ : Hk(Xa) → Hk(Xb))where ι∗
is the inducedmaponhomology from the inclusionmapon spaces.We consider the rank functions as lying
in aHilbert space and show that under reasonable conditions the rank functions frommultiple simulations
or experiments will lie in an affine subspace. This enables us to perform functional principal component
analysis which we apply to experimental data from colloids at different effective temperatures and to
sphere packings with different volume fractions. We also investigate the potential of rank functions in
providing a test of complete spatial randomness of 2D point patterns using the distances to an empirically
computed mean rank function of binomial point patterns in the unit square.

© 2016 Elsevier B.V. All rights reserved.

0. Introduction

Random point patterns arise in a wide variety of application ar-
eas from astrophysics to materials science to ecology to protein
interactions. The points might represent galaxies, colloidal parti-
cles, locations of trees, ormolecules, and their distribution in space
is indicative of the underlying processes that created the pattern.
When studying such systems a number of questions arise. For ex-
ample, could a given pattern be generated from a purely random
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process with no underlying interactions between the objects
(points)? If this null hypothesis can be rejected then wewould like
to say whether a proposed theoretical model generates patterns
that are consistent with experimental observations.Wemight also
need to compare a large number of point patterns and classify them
into different groups, or quantitatively track changes over time to
understand the dynamics of a system.

Stochastic geometry provides various tools to characterise ran-
dom spatial patterns and these have mostly focussed on first
and second-order techniques analogous to means and variance
in single-variable statistics [1]. Statisticians have historically used
functional summary statistics to study point processeswith impor-
tant examples including Ripley’s K -function (which describes the
cumulative distribution function of pairwise distances), the empty
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space function and the nearest neighbour function. One advantage
of summaries that are functions of a distance parameter is their
ability to capture information on different length scales, but it is
known that there are a number of situations where more sensi-
tive tests of structural difference are required [2]. Persistent ho-
mology is an algebraic topological tool developed for data analysis
that is an intuitively appealing measure of higher-order structure
and encompasses spatial correlations of all orders [3,4]. This pa-
per demonstrates how the information encoded by persistent ho-
mology can be converted into a form that is amenable to standard
statistical analysis techniques such as hypothesis testing and func-
tional principal component analysis (PCA).

Topology is the study of spatial objects equivalent under
continuous deformations—the old joke is that a topologist cannot
tell the difference between a coffeemug and a bagel. The homology
groups of a space X , Hk(X), k = 0, 1, 2, . . . are algebraically
quantified topological invariants that provide information about
equivalent points, loops, and higher dimensional analogues of
loops. Homology detects a k-dimensional hole as a k-dimensional
loop (cycle) that does not bound a (k+1)-dimensional piece of the
object. The ranks of the homology groups are called Betti numbers:
β0 counts the number of connected components, β1 the number
of independent non-bounding loops, β2 the number of enclosed
spaces in a three-dimensional object. A solid bagel and a coffee
mug both have β0 = 1, β1 = 1, β2 = 0, while their surfaces
have β0 = 1, β1 = 2, β2 = 1. Homology groups and their
Betti numbers are inherently global properties of an object that are
sensitive to some geometric perturbations (tearing and gluing) and
not to others (continuous deformation).

Another topological invariant that has recently been used to
summarise structure in point patterns is the Euler characteristic
signature function [2,5]. The Euler characteristic is the alternating
sumof the Betti numbers (for three-dimensional objects,χ = β0−

β1+β2). It is a topological invariant but also hasmeasure-theoretic
properties that make it more amenable to statistical analysis than
the Betti numbers, but it is a less sensitive topological invariant by
definition [6]. Nevertheless, the above studies have demonstrated
that the Euler characteristic signature function is sensitive to short-
range, higher-order correlations in point patterns.

To determine the homology groups, the topological space must
be represented by simple building blocks of points, line segments,
surface patches, and so on, that are joined together in a specific
way, i.e., as a cell complex. The homology groups are then defined
via a boundary operator, ∂k, thatmaps each cell of dimension k onto
the cells of dimension k − 1 in its boundary:

∂k : Ck → Ck−1. (0.1)

The kernel of ∂k is called the cycle group Zk and the image of ∂k+1 is
called the boundary group Bk. All boundaries are cycles, so we can
form the homology group as the quotient Hk = Zk/Bk. See the text
by Hatcher for a comprehensive treatment of homology theory [7],
or [8] for a concise overview aimed at physicists.

When examining point data, a parametermust be introduced to
define which points are connected to one another and so build the
cell complex. A crucial lesson learnt in the early days of topological
data analysis is that instead of trying to find a single best value
for this parameter, much more is learned by looking at how the
homology evolves over a sequence of parameter values. Rather
than working with a single cell complex we work with a filtration,
a family of spaces Ka such that Ka ⊂ Kb whenever a ≤ b. Often this
parameter a is a length scale, so that although we are measuring
topological quantities, the way these change tells us about the
geometrical features of the data set. For example, if we used a
filtration of R3 defined by lower level sets of the distance function
to the surface of an ideally-smooth bagel, wewould be able to read
the radius of the hole of the bagel from the function β1(Ka) as it

is at that radius that the space of loops changes from one to zero
dimensional. If the bagel is a real one with irregular cross-section,
bumps and splits, the Betti number function β1(Ka) will not be a
clean step function as it is in the ideal case, but may jump around
and obscure the exact point of the large-scale change from bagel to
blob.

The issue of topological noise, i.e., the lack of stability of the Betti
numbers, motivated the development of persistent homology in
the 1990s [9–11]. The inclusion of Ka ⊂ Kb for a < b induces a
homomorphism between the homology groups Hk(Ka) and Hk(Kb)
that tells us which topological features persist from Ka to Kb and
which disappear (i.e., get filled in). The persistent homology group
is the image of Hk(Ka) in Hk(Kb), it encodes the k-cycles in Ka that
are independent with respect to boundaries in Kb:

Hk(a, b) := Zk(Ka)/(Bk(Kb) ∩ Zk(Ka)). (0.2)

Algorithms for computing persistent homology from a given
filtration are quite simple in their most basic form [11,12], and are
now implemented efficiently in a number of freely-downloadable
packages [13–17].

The two most common ways of representing persistent
homology information are the barcode [18] and the persistence
diagram [19]. The barcode is a collection of intervals [b, d) each
representing the birth, b, and death, d, values of a persistent
homology class. Equivalently, the persistence diagram is a set of
points (b, d) in the plane. The main problem with these objects
is that they are very difficult to work with statistically. Distances
between persistence diagrams and definitions of their means and
variance require advanced analytical techniques [20–22].

In this paper we return to the above definition of persistent
homology groups and quantify them via their rank,

βk(a, b) := rankHk(a, b), for a < b. (0.3)

This persistent homology rank function is an integer-valued function
of two real variables and can be thought of as a cumulative dis-
tribution function of the persistence diagram. Since the persistent
homology rank function is just a function we can apply standard
statistical techniques to analyse distributions of them. This rank
function is related to the size function [9] and has also been defined
for multidimensional persistence, in the case of filtrations that are
built using two or more parameters [23,24]. Other functional sum-
maries of persistence diagrams have also been proposed recently
and termed persistence landscapes and silhouettes, see [25,26]. The
persistence landscapes λk(i, t) are a family of functions so that for
each i = 1, 2, 3, . . . , λk(i, t) is a function of a single variable (the
subscript k is the homology dimension as above). The variable t is
related to the persistence diagram coordinates by t = (b + d)/2.
We argue that the rank functions used here, βk(a, b), retain a more
direct connection to the geometry and topology of the original data,
although they are functions of two variables. In particular they are
more suitable for analysing distributions of local point configura-
tions.

This functional approach to persistent homology (either using
landscapes or rank functions) greatly simplifies the business of
‘‘doing statistics’’ with persistent homology. It provides a frame-
workwhere it is simple to compute averages and variances of these
topological signatures from many data sets generated by a partic-
ular system, and to make statistically rigorous statements about
whether an experimentally-observed pattern is compatible with a
theoretical model. In particular the pointwise average of βk(a, b)
is a function on R2+ which tells us the expected ranks of the
corresponding persistent homology groups. We can also perform
functional principal component analysis where the principal com-
ponent functions are also functions on R2+ containing topological
information about regions in the persistence parameter spacewith
the greatest variation.
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