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The aim of this note is to show that the classical results in finance theory for pricing
of derivatives, given by making use of the replication principle, can be extended to the
noncommutative world. We believe that this could be of interest in quantum probability. The
main result called the First fundamental theorem of asset pricing, states that a noncommutative
stock market admits no-arbitrage if and only if it admits a noncommutative equivalent martingale
probability.

Mathematics subject classification 2010: 46L53, 91B25, 91B80, 91G20.

Keywords: noncommutative probability, involutive algebras, stock markets, trading strategies,
hedging contingent claims, asset pricing.

1. Introduction

The aim of this article is to provide a noncommutative setting for pricing
of derivatives. Indeed, the main idea is to provide the precise formulation and
hypotheses in the noncommutative world in order to be able to prove the basic
results in option pricing by applying the so-called replication principle. In particular,
we prove the First fundamental theorem of asset pricing (see Theorem 1), stating
that a noncommutative stock market admits no-arbitrage if and only if it admits
a noncommutative equivalent martingale probability. There are several obstacles to
tackle which do not appear in the classical situation, such as the problems with the
notion of conditional expectation in the noncommutative setting (see Example 4),
which in turn implies that the definition of martingale is not very clear. The article
can be thus regarded as a proposal of a collection of definitions, which work in
the noncommutative world and thus lay a rather simple theoretical framework, that
allow us to extend the classical results in finance theory of pricing of derivatives.
Of course, many of the steps we shall follow are greatly inspired by the classical
theory, which we more or less try to follow.
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Our point of view of noncommutative probability theory is mainly algebraic
(see [12] and also the very interesting [21]), and we usually refrain from imposing
analytic conditions, such as being a C∗-algebra or a W ∗-algebra, but simpler algebraic
hypotheses which extract the only required properties in order to prove our theorems.
In particular, this theory can be used to understand examples that appeared in the
literature, as the toy quantum binomial model in [7]. We remark however that our
point of view is in principle different from [5, 6]. It is also different from the
work appearing in [19] or [2, 3], for we do not use any specific physical model
to describe the price processes or the trading strategies.

Our main motivation is given by noncommutative probability spaces coming
from quantum theory (see Example 2). This becomes apparent in case one considers
markets modelled using quantum computations, when both the price processes and
the trading strategies should follow quantum principles, as the toy model in [7].
A particular field of (future) interest could be to develop quantum versions of High
frequency trading (HFT), implemented using quantum computers, even though the
(classical) theory is in principle different.

2. Noncommutative probability spaces

2.1. Basic definitions

We recall now the basic definitions of noncommutative probability theory given
by T. Tao in [21], Section 2.5. In order to do so, we introduce first some basic
notion of the theory of involutive algebras (see [17], Chapter 9, and references
therein for further details).

We recall that a ∗-vector space consists of a vector V over the complex numbers C
together with a sesquilinear map (−)∗ : V → V (i.e. (v + cw)∗ = v∗ + c̄w∗, for
all v,w ∈ V and c ∈ C, where c̄ denotes the complex conjugate of c) which is
an involution, i.e. (v∗)∗ = v, for all v ∈ V . To reduce notation we will typically
denote a ∗-vector space (V , (−)∗) by its underlying vector space V . Note that C
is a ∗-vector space with the involution given by complex conjugation. Given two
∗-vector spaces V and W , a morphism from V to W (also called a ∗-linear map)
is a C-linear map f : V → W between the underlying vector spaces that commutes
with the involutions, i.e. f (v)∗ = f (v∗), for all v ∈ V .

A ∗-algebra (or involutive algebra) is a ∗-vector space A together with an
associative C-algebra structure on the underlying vector space of A such that
(ab)∗ = b∗a∗, for all a, b ∈ A. We further say that it is a unitary ∗-algebra if the
underlying associative algebra has a unit 1A. Note that the uniqueness of the unit
implies that 1∗A = 1A. A morphism of (resp. unitary) ∗-algebras is a ∗-linear map
which is also a morphism of the underlying (resp. unitary) associative algebras.
Given a set S ⊆ A satisfying that S∗ ⊆ S, we denote by C (S) the space formed
by all elements x ∈ A which commute with all elements of S. It is usually called
the centralizer (or commutant) of S. Note that the condition S∗ ⊆ S implies that
C (S) is a sub-∗-algebra of A.
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