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a b s t r a c t

In this work, we present higher order solitary wave equations, in particular sixth order.
We show how these equations can be derived using fundamental physics laws, such as
the Ohm’s law. We use the Taylor series expansion and in some cases the Hirota’s bilinear
operator to obtain these model equations. The sixth order solitary wave equations model
different physical problems such as problems in the electrical domain and the propagation
of dispersive water waves.
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1. Introduction

The solitary wave (localized wave with permanent character) was first observed by John Scott Russell on the surface of
a shallow water layer (a canal near Edinburgh) and the theory of the solitary waves was developed by Boussinesq [1,2] to
explain his observations. The work of Boussinesq introduced a new paradigm in which the existence of permanent waves in
nonlinear systems is the result of the balance between nonlinearity and dispersion. Under the assumption of slow evolution
in the frame moving with the center of the solitary wave, Boussinesq’s equation can be reduced to the famous Korteweg
and de Vries equation (KdV) for which Zabusky and Kruskal [3] discovered numerically wave solutions with particle-like
behavior which they called solitons. Later on, the Boussinesq equation was shown to apply to the continuous limit of atomic
lattices [4] (see, e.g., [5]) and to the flexural deformations of elastic rods. Solitons on elastic rods have been studied for
different models and by different techniques (see, e.g. [6], and the monograph [7]). For the more fundamental information
about the connection of solitary wave problems to homoclinic bifurcation, the reader is referred to the review [8].

Solitons have been studied intensively for the last 60 years now and theory and experimental results have been
established. It has been proven that solitons exist only in integrable systems, therefore there is a great need of finding such
systems since they are very rare to find. The work in this paper was motivated by the work of Christov [5] where a chain
of points of equal masses, connected to each other through springs, was considered. After applying Newton’s law for the
mass point of number n, a discrete model was derived and using the continuum limit approximation the model equation
was obtained.
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Fig. 1. A nonlinear transmission line.

In the current paper, problems arising from various areas of physical applications were considered. We begin by
redefining the notion of nonlinear transmission line (NLTL) and the application of Ohm’s law. The problem is rendered
to a nonlinear Toda lattice where the force between masses is replaced by the voltage at sections of the NLTL, [9]. Then,
after applying the Taylor series expansion, we end up to a sixth order Boussinesq type equation. Moreover, if the Boussinesq
approximation is applied on the nonlinear term of the new model equation, we can show that the model is comparable
to the equation proposed in [10]. The next problem considered, originates from the work of Fermi, Pasta and Ulam [11]
and the work of Kruskal and Zabusky [12,13]. Here, a one dimensional lattice consisting of identical masses joined with
springs was considered and Hooke’s law is applied to evaluate the force exerted by extending or compressing the springs.
The Taylor approximation is applied to produce a sixth order model equation. Finally, the Hirota bilinear operator is used on
the Boussinesq equation to obtain a new sixth order equation, which is also comparable to the equation proposed in [10].

2. Sixth order equation using Ohm’s law

In this work, our aim is to study solitons that occur in electrical transmission lines; these are called electrical solitons,
[9,14,15]. In general, a transmission line ismade of twowires used to transmit an electronic signal.When an electronic wave
or pulse propagates along the transmission line its behavior depends on the nature of the wave along and the type of wires,
as well as the interaction between the wires. In the current paper, we consider a transmission line which is constructed
by an inductance per unit length L and a capacitance per unit length C between the wires, see Fig. 1. In the case where the
capacitance is a linear function of the applied voltage V the transmission line is called linear where as in the case where the
capacitance is a nonlinear function of the voltage the transmission line is called nonlinear.

Ohm’s law for an inductor is given by

V = L
dI
dt

, (1)

where V is the voltage, L the inductance and dI
dt is the instantaneous rate of current change. The nodal equations are

Vn−1 − Vn = L
dIn
dt

, (2)

Vn − Vn+1 = L
dIn+1

dt
, (3)

In − In+1 =
dQn(V )

dt
, (4)

where Qn(V ) is the charge on the nth capacitor. If we differentiate Eq. (4) with respect to t and make use of (1) we have

d2Qn(V )

dt2
=

1
L
[Vn−1 − 2Vn + Vn+1] . (5)

One may choose

Qn(V ) = Qo ln

1 +

Vn

Fo


, (6)

and, Eq. (5) is rendered to

QoL
d2

dt2
ln


1 +

Vn

Fo


= [Vn−1 − 2Vn + Vn+1] , (7)

where Fo is Faraday’s constant. Eq. (7) is basically a nonlinear Toda lattice where the force betweenmasses is replaced by the
voltage between sections of the nonlinear transmission line. Following thework of Christov [5], where a quadratic potential
based on the three-point difference was used, that yields a linear term proportional to the five-point difference

Vn−2 − 4Vn−1 + 6Vn − 4Vn+1 + Vn+2. (8)
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