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h i g h l i g h t s

• Exact solutions are constructed for electromigration dispersion waves.
• Reduction to a Darboux equation is achieved under a traveling-wave ansatz.
• Integral curves connecting equilibria are completely characterized.
• Bistability results in the coexistence of kink solutions.
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a b s t r a c t

We construct exact solutions to an unusual nonlinear advection–diffusion equation arising
in the study of Taylor–Aris (also known as shear) dispersion due to electroosmotic flow
during electromigration in a capillary. An exact reduction to a Darboux equation is
found under a traveling-wave ansatz. The equilibria of this ordinary differential equation
are analyzed, showing that their stability is determined solely by the (dimensionless)
wave speed without regard to any (dimensionless) physical parameters. Integral curves,
connecting the appropriate equilibria of the Darboux equation that governs traveling
waves, are constructed, which in turn are shown to be asymmetric kink solutions (i.e.,
non-Taylor shocks). Furthermore, it is shown that the governing Darboux equation exhibits
bistability, which leads to two coexisting non-negative kink solutions for (dimensionless)
wave speeds greater than unity. Finally, we give some remarks on other types of
traveling-wave solutions and a discussion of some approximations of the governing partial
differential equation of electromigration dispersion.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

From the early work on Taylor cones and jetting [1] and the Taylor–Melcher leaky dielectric model [2] to modern
microfluidics applications [3,4], such as electrophoretic separation of mixtures [5], electrokinetic and electrohydrodynamic
phenomena remain an active topic of research [6] in physicochemical hydrodynamics [7, Chapters 6–7] (see also
[8, Chapters 8–10]). A related topic is the phenomenon of Taylor–Aris dispersion [9,10], which is one example of a
macrotransport process [11] describing the spread of the cross-sectionally averaged concentration of a tracer in a laminar
flow far downstream from the point of injection. For example, in a pressure-driven laminar flow (mean speed ū) of a
Newtonian fluid in a planar slot of height h0, a dispersivity D = D + h2

0ū
2/(210D) is found for the case of a tracer of

diffusivity D [11, Chapter 2]. The cross-sectionally averaged concentration is, then, advected downstream with constant
speed ū and spreads with an effective diffusivity equal to the dispersivity D .
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The classical dispersion equation is a linear advection–diffusion equation, which is solvable by classical techniques
(integral transforms, self-similaritymethods, separation of variables, etc. [12]). However, different physical contexts present
new aspects to dispersion. For example, streamwise variations of the mean flow in a radial geometry [13] leads to
nonstandard self-similarity exponents (specifically t1/4 instead of t1/2), while a shear-rate dependent diffusivity turns out
to yield the classical Taylor–Aris dispersion equation albeit with different numerical pre-factors [14]. The effect of geometry
has also been addressed [15–17] due to its implications for microfluidic devices [3], in which case a surprising result arises:
the dispersivity scales with the width and not the height of the channel.

While the latter examples all involve dispersion equations that are linear, recent work on Taylor–Aris dispersion of
concentrated suspensions has yielded nonlinear governing equations. For example, if the diffusivity is made concentration-
dependent [18] due to the effects of shear-inducedmigration of finite-sized particles in a laminar flow [19,20], the dispersion
equation becomes an advection–diffusion equation with nonlinear diffusivity. In this case, self-similar solutions can still
be found analytically [18, Eq. (16)]. If a suspension-balance approach is used to fully account for the suspended particles’
effect on the laminar flow field, then the dispersion equation has both nonlinear advective and nonlinear diffusive terms
[21, Eq. (4.1)]. In the latter case, however, the form of the nonlinearity is quite involved, precluding any analytical results.
Returning to the electroosmotic flow context [22–24], dispersion is considered a hinderance for lab-on-a-chip technologies
if the goal is separation and fractionation [5,25], while the enhanced mixing due to dispersion is sought out for other
applications [3, Section 3]. Either way, it is clear that accurate model equations and their solutions (analytical, if possible)
are needed to gain practical understanding and determine conditions for minimizing/maximizing dispersion [26]. More
recently, Ghosal and Chen [27–30] have undertaken the study of electromigration and dispersion of analytes with and
without a background electroosmotic flow.

In particular, in [30], a nonlinear electromigration dispersion equation that models Taylor–Aris (shear) dispersion
in a capillary in the presence of electroosmotic flow was derived. This equation [30, Eq. (3.23)], which features both
nonlinear advective and nonlinear diffusive terms is unlike [21, Eq. (4.1)], in that the nonlinearities are elementary
functions of the dependent variable. Such equations are generally of interest in mechanics and applied mathematics
because of what Crighton [31] has termed, in the context of hydrodynamics, the Taylor–Lighthill balance: the tendency
of (linear or nonlinear) dissipation such as diffusion to counteract wavefront steepening due to advective nonlinearities
in the governing equations [31,32]. The Taylor–Lighthill balance results in smooth waveforms, often termed kinks (to be
precisely defined below), in the traveling wave context [33]. (In higher-order evolution equations, such as the celebrated
Korteweg–de Vries model, this balance produces solitons [34, Section 2.1].) Ghosal and Chen [27–30] presented numerical
evidence, and analytical results in some special cases, showing that the Taylor–Lighthill balance yields permanent traveling
electromigration waveforms. However, a detailed mathematical analysis of [30, Eq. (3.23)] is lacking. Additionally, in [30],
the authors also suggested the use of amodified version of the original nonlinearities (specifically, a Taylor-series expansion
keeping only a few terms) of the electromigration dispersion equation. It is known, however, that such modifications of the
nonlinearities are not always valid and can lead to significant differences between the original and approximate equations in
the context of nonlinear acoustics [35,36]. Therefore, there is an impetus to obtain exact results regarding the full nonlinear
electromigration dispersion equation.

To this end, in the present work, we show that exact travelingwave solutions can be constructed for the electromigration
dispersion equation, and the latter can be well approximated by Taylor shock (i.e., ‘‘tanh’’) [37,31] profiles. Aside from the
fundamental, mathematical interest in obtaining an exhaustive classifications of various solutions to field theories [38], it is
important to understand traveling electromigration wave phenomena [39] (also known as isotachophoretic boundaries [40]
in other contexts) because, for example, such traveling waves can be used as the basis for electrophoretic separation
methods [40]. In this context, being able to generate and propagate a concentration kink through an ionic solution leads to
the partitioning of the solution into zones of nearly uniform compositions [40], effectively separating analytes of different
conductivities. Alternatively, a traveling-wave can be imposed by applying an external electric field, which also yields an
effective separation technique for microfluidic devices [41].

2. Problem formulation

Ghosal and Chen [18, Eq. (3.23)] derived the followingmacrotransport equation for the cross-sectionally averaged sample
concentration φ̄(x, t) (relative to the background):
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where t is time, x is the streamwise coordinate, the positive constant ueo is the mean electroosmotic flow speed, the
positive constant v0 is the migration velocity of any isolated ion, α is a constant parameter used in [27] to characterize
the nonlinearity, D is the constant diffusivity of each ion species (all equal in this case), w0 is the planar capillary’s constant
half-width and k = 2/105.

To simplify the analysis, we rescale φ̄ and switch to the moving frame of the mean flow:

x∗
= x − ueot, t∗ = t, φ̄∗(x∗, t∗) = αφ̄(x, t), (2)
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