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h i g h l i g h t s

• Dispersive waves in solids with hierarchical microstructure are studied.
• Dispersion analysis shows pre-resonant states resulting in negative group velocity.
• The influence of material parameters on the evolution of wave profiles is shown.
• The negative group velocity can lead to a smaller ‘‘effective’’ dispersion.
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a b s t r a c t

Waves with the negative group velocity (NGV) are known to exist in optics (Sommerfeld
and Brillouin) and in some mechanical cases like layered media, cylindrical shells and
cylinders. In this paper the effects of the NGV on the evolution of the wave profiles are
studied in the context of a Mindlin type continuummodel with twomicrostructures in the
1D setting. Based on dispersion analysis, the range of parameters when the NGV region
exists is determined. Numerical analysis is used to establish effects of the NGV in the
evolution of wave profiles in time. The results can be used in material science.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The negative group velocity (NGV) is an interesting phenomenon usually attributed to optics [1–3]. As far as this
phenomenon is related to wave propagation, it is not surprising that the NGV can also exist for deformation waves in solids.
It was shown already by H. Lamb [4] for transverse vibrations of strings even earlier than famous studies in optics [3]. In
physical terms, the NGV appears for Lamb waves in layered media (solid–liquid–solid) [5], for plates both experimentally
(see [6,7] and references therein) and theoretically (see [8,9] and references therein), for waves in cylindrical shells [10]
or cylinders [11], for waves in metamaterials [12,13], etc. We noticed the appearance of the NGV for longitudinal waves in
microstructuredmaterials withmultiple scales (a scale within a scale) [14,15]. In this case the dispersion analysis shows the
existence of three dispersion curves: one acoustic branch and twooptical branches. For some sets ofmaterial parameters two
optical branches are close to each other. As far as optical branches describe non-propagating oscillations, it was conjectured
in [15] that at such a pre-resonant situation these non-propagating oscillations are coupled resulting in the NGV. Clearly
further studies are needed for understanding this interesting phenomenon in order to establish the dependence of the NGV
on physical parameters of the microstructure and the influence of the NGV on wave profiles. The latter effect is interesting
because in optics usually the NGV is space-dependent, but the NGV in microstructured solids depends on wavenumbers
(frequencies).
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In this paper further analysis is presented forMindlin-typemodels describing themicrostructured solids [14,16–18]. The
attention is focused (i) to establishing the regions of parameters where the NGV can exist and (ii) to describing the changes
of wave profiles in regions where the NGV exists. In Section 2 the governing equations are presented together with sets of
material parameters used in the further analysis. Section 3 is devoted to the dispersion analysis. The detailed study of group
and phase velocities permits to reveal the changes in dispersion characteristics due to changes in material parameters and
establish the basis for numerical analysis. In Section 4 the ideas of the pseudospectralmethodused in numerics are described.
The main results of the analysis are presented in Section 5 while in Section 6 final remarks are given.

2. Governing equations

In the present paper a mathematical model for microstructured solids is considered which can have the NGV regions
in their dispersion curves under some parameter combinations. The derivation of the governing equations is briefly the
following. We start with Lagrangian L = K − W , where K is the kinetic and W is the potential energy and derive the gov-
erning equations by using Euler–Lagrange equations after determining the K andW . For twomicrostructures with different
scales one of the simplest potentialsW which accounts for nonlinear and dispersive terms can be taken as (see [19,20] and
references therein)
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where u is themacrodisplacement, ϕi aremicrodeformations and capital letters denotematerial coefficients. Subscript x de-
notes the spatial, and t the timederivative, respectively. Ifwe takeA12 = 0 thenwe get a doublemicrostructuremodelwhere
concurrent microstructures do not interact. Taking A2 = 0, results in a hierarchical microstructure model where the second
microstructure is embedded into the first one. In the following we deal with the case A2 = 0. Following the Euler–Lagrange
formalism (see [14,15,20] for details), the system of governing equations in the dimensionless normalised form is

UTT = UXX + α1Φ1X + α2Φ2X + α3UXUXX ,

Φ1TT = β1Φ1XX + β2Φ2X − β3Φ1 + β4Φ1XΦ1XX − β5UX ,

Φ2TT = ζ1Φ2XX − ζ2Φ1X − ζ3Φ2 + ζ4Φ2XΦ2XX − ζ5UX ,

(2)

where coefficients in terms of material and geometrical parameters are expressed as
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Here ρ is the density, Ii are the microinertia, li are the characteristic scales of the microstructures (i = 1, 2), U0 is the ampli-
tude and L is the wavelength of the initial excitation. For the sake of clarity it should be noted that the change of variables for
the dimensionless form is x = LX , t = (LT )

√
ρ/Y , u = UoU , φi = (L/li)Φi and the ratio L/li has been introduced to take into

account the scale separation between microstructures explicitly. The microdeformations are dimensionless to start with
and the introduced ratio maintains that property (see [14] for details).

Based on earlier research [15], we note that model (2) leads to three dispersion curves — one acoustic and two optical
branches.Wepick up thematerial parameters in away that results in three different cases for theNGV. The first case iswhere
there is no NGV region, the second case is when the acoustic branch has a local minimum at zero group velocity at a certain
wavenumber and the last case is when there is a NGV region at a certain range of wavenumbers in the acoustic branch.
In addition, as a result of normalising the equations some additional constraints have been introduced for the material
parameters resulting in a situation where the first optical branch starts from the dimensionless frequency equal to one at
low wavenumbers (i.e., ξ < 1) and the second optical branch starts from the dimensionless frequency equal to two. For the
normalisation the dimensionless speed of sound for the bulk medium has been taken equal to one. The NGV condition is
controlled by changing parameters A12 and C1. Parameter B2 is kept constant.

For the potentialW , (relation (1)) the chosen parameters for most calculations are:
Y = 100, A1 = 5, A2 = 0, B1 = 10, B2 = 16, C2 = 8, N = M1 = M2 = 0,
while material and geometrical parameters are:
ρ = 100, I1 = 10, I2 = 4, Uo = 1, L = 1, l1 =

1
4 , l2 =

1
20 .

The parameters A12 and C1 are given in Table 1. The ‘‘Zero NGV’’ case in Table 1 is considered the reference case meaning
that if C1 is varied then parameter A12 is kept at its reference value and vice versa. Later also the case N ≠ 0, M1 ≠ 0 and
M2 ≠ 0 is analysed.
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