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h i g h l i g h t s

• A boundary-element method for grating stacks in thin elastic plates is given.
• The numerical solution is validated against circular cavities solved by the multipole method.
• Results are presented for various cavity geometries.
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a b s t r a c t

The reflection and transmission spectrum of an individual grating, and repeated stacks
of gratings, is computed using boundary integral methods for arrays of arbitrarily shaped
cavities, with free-edge boundary conditions, that are periodically repeated in a thin elastic
plate. The solution is found using a specially developed boundary elementmethod coupled
with an array Green’s function. The computational code is tested against the solution
obtained using multipoles which applies only to circular geometries but is shown to give
very good agreement. The code is also validated using energy balance equations which
includes the evanescent modes. A number of cavity shapes are investigated and results are
compared against circular cavities with equivalent volumes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Diffraction gratings are periodic structures that provide active control over the propagation ofwaves throughmedia. They
are extensively used in a wide range of scientific fields, with particular emphasis in the fields of optics, acoustics, chemistry
and in the life sciences [1]. Through a careful choice of grating design, the controlled manipulation of light, sound, and
vibrational waves can be achieved to build a wide of practical devices and to steer waves in specified directions. Despite the
extensive attention paid to photonic and phononic structures, wave propagation in different systems, such as thin elastic
plates, has received comparatively little research attention. This is widely regarded as being due to the extensive range
of possibilities already open in photonics and phononics, but also because the governing equation for thin plates is the
biharmonic operator, which is a fourth-order partial differential equation, in contrast to the Helmholtz equation, which is a
second-order equation that governs wave dynamics in a wide range of periodic systems.

The study of wave propagation through thin elastic plates is commonly referred to as ‘platonics’ [2], and in this work
we will consider plane wave propagation through gratings comprising a one-dimensional array of inclusions of arbitrary
geometry. At the edges of these inclusions, free-edge boundary conditions are imposed, in an extension of previous work by
some of the authors [3] on two-dimensional platonic crystals and platonic gratingswith clamped-edge boundary conditions.
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Existing work on platonic structures has been primarily restricted to clamped and free-edge circular inclusions [4–6]
or to zero-radius clamped inclusions (pins) [7–12], where semi-analytic solutions are available using multipole methods.
That said, other geometries such as squares [13,14] and circular inclusions bisected with Euler–Bernoulli beams [15] have
also been considered. The fundamental issue with free-edge boundary conditions is that they are intractable, even for
circular inclusions, which has given rise to incorrect expressions for free-edge platonic crystals [5]. This error was found
in the development of the present work, which lead to the corrected form for two-dimensional arrays of circular inclusions
in [16], and in the Appendix to the present work we include the correct multipole solution for a grating of free-edge circular
inclusions to avoid any possible ambiguity.

The solutionmethod we present is a generalized boundary-integral approach [3,17]. In this setting, the periodicity of the
system is embedded in quasi-periodic Green’s functions which in their canonical form, are slowly converging. However a
wide range of methods have been developed to accelerate their convergence [18] and these are employed in the present
work. After imposing the free-edge boundary conditions in the boundary integral system, we evaluate the unknown
boundary displacement and normal derivative as Fourier series and impose a solvability condition. This admits a matrix
system for the unknown coefficients and gives the necessary boundary data to evaluate the reflection and transmission
coefficients for the grating problem [19,3]. Incidentally, the fundamental difference between a grating and a crystal is that
the domain for the grating problem is geometrically non-compact, and so there is no discrete spectrum, even though a
crystal can be regarded as an infinite stack of gratings.

We emphasize that the numerical procedure presented here is intensive, and the results presented primarily serve to
illustrate themethod. The boundary integral method shown here is able to give a converged solution for the platonic grating
problem, andwe note that at present, commercially available finite element solvers have no direct framework for a solution.
To obtain a finite element method solution to a one-dimensional grating problem, a finite domain must be considered,
and imposing the appropriate radiation condition (i.e., imposing perfectly matched layers for the biharmonic operator)
is expected to be a non-trivial task. We have developed a complete solution method for arbitrary geometries where this
difficulty is entirely avoided as the Green’s functions satisfy the necessary radiation conditions.

In addition to considering wave scattering by platonic gratings, we also consider stacks of gratings [20,21], and present
a well-known recurrence relation procedure to determine the reflection and transmission matrices for multiple layers. For
a selection of arbitrary geometry configurations (where the inclusion areas are approximately equivalent) we demonstrate
that the principal orders of reflection are periodic with increasing rectangular spacing. For a single grating comprising
arbitrarily shaped inclusions with two- and four-fold symmetry, the choice of inclusion geometry has a minimal effect on
the transmission and reflection spectrum. However, for more complicated geometries such as Helmholtz resonators, the
reflection spectra exhibits unique characteristics.

The outline of this paper is as follows. In Section 2we present the problem formulation forwave incidence on an arbitrary
grating for all boundary condition classes. In Section 3 we consider the solution for an arbitrary inclusion inside a grating
cell. In Section 4 we decompose the boundary data into Helmholtz andmodified Helmholtz components for use in Section 5
where we compute the reflection and transmission matrices for a single grating. In Section 6 we outline the recurrence
relation procedure for multiple grating stacks. In Section 7 we present the energy balance equation for platonic gratings.
This is followed in Section 8 by a selection of numerical results and concluding remarks in Section 9. Appendix presents the
multipole solution for a grating of circular, free-edge inclusions.

2. Problem formulation

The governing equation for the out-of-plane displacement of a thin, elastic plate (Kirchhoff–Love plate) is the biharmonic
equation

(∆2
− k4)w = (∆ + k2)(∆ − k2)w = 0, (1)

where k2 = ω
√

ρh/D, ω is the angular frequency, ρ is the mass density, h is the thickness, D is the flexural rigidity of the
plate, andwe have assumed a time dependence of exp(−iωt). In this paper we consider planewave incidence upon an array
of cavities of identical shape (but arbitrary geometry) assuming free-edge boundary conditions are imposed on the edges of
each hole. Following the procedure in Smith et al. [17,3], this system of equation can be decomposed into two natural field
components, and we provide a brief outline for the purposes of completeness here.

Due to the linearity of the biharmonic equation the total displacement can be decomposed into incident and scattered
fields, which may also be decomposed into their respective Helmholtz and modified Helmholtz components as

w = wH
I + wH

S + wM
I + wM

S . (2)

Using Green’s second identity with this decomposition, a boundary integral system describing a single grating is obtained
[3,17] and takes the form

1
2w

M(x) = wM
I (x) +

∞
m=−∞


∂Ωm


∂n′GM(x, x′)wM(x′) − ∂n′wM(x′)GM(x, x′)


dS ′, (3a)
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