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h i g h l i g h t s

• Reflection and transmission of waves by thin plate.
• Low reflection values when the plate is allowed to drift.
• Wave transmission dependent by incident period and amplitude.
• Relevant energy dissipation occurring in the presence of water overwash.
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a b s t r a c t

Measurements of the wave fields reflected and transmitted by a thin floating plastic
plate are reported for regular incident waves over a range of incident periods (producing
wavelengths comparable to the plate length) and steepnesses (ranging frommild to storm-
like). Two different plastics are tested, with different densities and mechanical properties,
and three different configurations are tested. The configurations include freely floating
plates, loosely moored plates (to restrict drift), and plates with edge barriers (to restrict
waves overwashing the plates). Thewave fields reflected and transmitted by plateswithout
barriers are shown to become irregular, as the incident waves become steeper, particularly
for the denser plastic and the moored plate. Further, the proportion of energy transmitted
by the plates without barriers is shown to decrease as the incident wave becomes steeper,
and this is related to wave energy dissipation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Thin, floating plates have been used to model sea ice floes (discrete chunks of sea ice) and very large floating structures
(VLFSs, e.g. floating runways), with a large branch of these models developed to investigate interactions between surface-
water waves and the plates (floes or VLFSs). For these applications, typically, the horizontal dimensions of the plates are
comparable to wavelengths, so that the plates flex in response to the waves, in addition to experiencing rigid-bodymotions.
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Fig. 1. Schematic of the two-dimensional canonical model and governing equations of the associated boundary-value problem.

Particularly for sea ice applications, wave–plate interaction models are used to predict the proportions of incident wave
energy reflected and transmitted by the floe, as this provides predictions of the distances ocean waves travel into the ice-
covered ocean and impact the ice cover [1–3].

The canonical theoretical wave–plate interaction model is a Kirchoff–Love thin-plate floating on top of an inviscid,
incompressible fluid undergoing irrotational motions, meaning the water velocity field can be defined as the gradient of
a scalar potential function. It assumes linearity (in terms of the Bernoulli water pressure, the material response of the plate,
and the moving boundary conditions) and harmonic time dependence at a prescribed angular frequency ω = 2π/τ , thus
fixing the open-water wavelength λ (for a given water depth). The plate oscillates in response to an incident wave at the
prescribed frequency, in both its rigid-body and flexural modes, but does not drift. Water and plate motions are coupled
at the lower surface of the plate only, assuming that all points on this surface remain in contact with the water during
motion. This produces a boundary-value problem for the time-independent component of the velocity potential,φ, in which
the plate cover provides a high-order surface condition, effectively removing the vertical geometry of the plate from the
problem. Reflection and transmission result solely from impedance mismatches (i.e. different wave numbers) between the
open water and the plate-covered water.

Meylan and Squire [4] studied wave reflection and transmission by an ice floe of uniform thickness h, using a two-
dimensional version of the canonical model (one horizontal dimension and one depth dimension, with coordinates x and
z, respectively), similar to the theoretical model used in this study, although neglecting draught of the plate and its surge
motion. Fig. 1 shows a schematic of the two-dimensional canonical model and the associated boundary-value problem for
φ. The operator L involved in the surface condition is defined as L{•} = ρg for the intervals of open water, where ρ is the
water density and g ≈ 9.81 m s−2 is the constant of gravitational acceleration. For the interval occupied by the plate, it is
defined by

L{•} = (ρg − ω2m) • +
Eh3

•xxxx

12(1 − ν2)
(1)

wherem is the plate mass per unit length, E is its Young’s modulus and ν is its Poisson’s ratio. Free edge conditions, φxxz = 0
and φxxxz = 0, are applied at the ends of the plate.

Motion is forced by a train of regular waves (with sinusoidal profiles), incident on the plate from its right-hand side, with
surface elevation ηinc = a cos(kx + ωt), where a is a prescribed amplitude and k = 2π/λ is the open-water wave number.
The plate partially reflects and partially transmits the incidentwaves. Far enough away from the plate that the exponentially
decaying local motions have died out, the reflected and transmitted fields are regular wave trains, with surface elevations

ηref = aref cos(kx − ωt + ϕref) and ηtra = atra cos(kx + ωt + ϕtra), (2)

respectively, where aref and atra are the reflected and transmitted amplitudes, and ϕref and ϕtra are phases. In the front field,
on the right-hand side of the plate, the incident and reflected waves superpose to create a partial standing wave field. In the
rear field, on the left-hand side, the wave field consists of transmitted waves only.

The canonical model is energy conserving, meaning that the energy in the incident waves is distributed into the reflected
and transmitted waves. This property is expressed as R + T = 1, where R = |aref/a|2 and T = |atra/a|2 – the proportions of
energy reflected and transmitted – are referred to as the reflection and transmission coefficients, respectively.

Meylan and Squire [4] found that R is generally less than order 10−2 for plate lengths less than approximately one-third
the incident wavelength, implying that the incident wave is almost entirely transmitted in this regime. Longer plates were
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