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h i g h l i g h t s

• Diffusion of elastic waves by screw dislocations is studied in two dimensions.
• Incoherent behavior is characterized by way of a Bethe–Salpeter equation.
• AWard–Takahashi identity is demonstrated.
• The diffusion coefficient is calculated.
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a b s t r a c t

We study the diffusion of anti-plane elastic waves in a two dimensional continuum by
many, randomly placed, screw dislocations. Building on a previously developed theory for
coherent propagation of such waves, the incoherent behavior is characterized by way of a
Bethe–Salpeter (BS) equation. A Ward–Takahashi identity (WTI) is demonstrated and the
BS equation is solved, as an eigenvalue problem, for longwavelengths and low frequencies.
A diffusion equation results and the diffusion coefficient D is calculated. The result has the
expected form D = v∗l/2, where l, the mean free path, is equal to the attenuation length
of the coherent waves propagating in the medium and the transport velocity is given by
v∗

= c2T /v, where cT is the wave speed in the absence of obstacles and v is the speed of
coherent wave propagation in the presence of dislocations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The interaction of elastic waves with dislocations in elastic solids has been studied over several decades, since the
pioneering work of Nabarro [1], Eshelby [2,3], Granato and Lücke [4,5] and Mura [6]. Nabarro [1] and Eshelby [2,3] noted
that the mathematics describing the interaction of screw dislocations with anti-plane elastic waves in a two-dimensional
continuum is the same as that of electromagnetic waves in interaction with point charges, also in two dimensions. A
translation of the well-studied electrodynamics allowed these researchers to obtain expressions for the elastic radiation
emitted by a screw dislocation in arbitrary motion. The more difficult case of the radiation generated by an edge dislocation
in arbitrary motion was solved by Mura [6], who also found expression for the radiation generated by a dislocation loop of
arbitrary shape undergoing also arbitrary motion. The converse problem, the response of a dislocation loop to an incoming,
time dependent stress wave, was solved by Lund [7] using arguments of energy and momentum conservation.

Granato and Lücke [4,5] formulated a theory for the propagation of an averaged acoustic wave in the presence of many
dislocation segments, using a string model for the dislocation pioneered by Kohler [8]. Their results have been widely used
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to interpret experimental results of mechanical damping andmodulus change that are both frequency and strain-amplitude
dependent. This theory is a scalar theory that cannot distinguish between longitudinal and transverse waves, nor between
edge and screw dislocations. Hence, it could not account for results that depend on the polarization of the waves. Also,
attempts at using it to explain thermal conductivity measurements did not take into account the attenuation due to loss of
coherence nor the diffusive behavior of incoherent contributions [9,10].

In recent years, Maurel, Lund, and collaborators have revisited the theory of the dislocation–wave interaction. Using
the equations of [7] they obtained explicit expressions for the scattering of an elastic wave by screw and edge dislocations
in two dimensions [11], and by pinned dislocation segments [12] and circular dislocation loops [13] in three. In addition,
and using multiple scattering methods that go back to the work of Foldy [14], Karal and Keller [15] and Weaver [16], they
obtained expressions for the effective velocity and attenuation of an elastic wave moving through a maze of randomly
placed dislocations in two [17] and three [18] dimensions. These results generalized the theory of Granato–Lücke to keep
track of the wave polarization and vector character of the dislocations. In this way previously unexplained experimental
results concerning the different response of materials to longitudinal and transverse loadings found an explanation [19].
More interestingly, they suggested a way to use ultrasound as a non-intrusive wave to measure dislocation density. This
possibility has been recently shown to be feasible, and leads to measurements more accurate than those obtained with X-
ray diffraction [20,21]. The multiple scattering theory of elastic waves has also been studied in relation to propagation in
polycrystals [22–24] and composites [25,26].

Having studied the behavior of coherent waves, the question naturally arises as to the behavior of incoherent waves.
Diffusion techniques developed to deal with the localization of de Broglie waves that describe the quantum mechanics of
electrons in interaction with randomly placed scatterers have been used to study the behavior of classical waves, a central
role being played by the Bethe–Salpeter (BS) equation [27–29]. The behavior of elastic waves in interaction with a variety
of scatterers and within a variety of geometries has been studied by Kirkpatrick [30], Weaver [16], and Van Tiggelen and
collaborators [31–33]. Also, an early approach that uses energy transport equations [34] has been widely applied.

The diffusion of elastic waves, albeit in their quantized form, phonons, is central to thermal transport inmaterials, a topic
of much current concern. Yet, surprisingly little appears to be quantitatively known about the role played by the interaction
of elastic waves with dislocations [35] in thermal transport. It stands to reason then that a detailed study of the diffusive
behavior of elasticwaves in interactionwithmany, randomly placed, dislocations, should be undertaken. Since elasticwaves
are vector waves and dislocations are linear objects characterized by their tangent and Burgers vectors, the tensor algebra
associated with the proposed study appears daunting. A first step should be to consider a simplified setting that captures
the essence of the problem. This paper is devoted to precisely this aim: it studies the diffusive behavior, in two dimensions,
of an anti-plane elastic wave in interaction with many, randomly placed, screw dislocations.

1.1. Organization of this paper

This paper is organized as follows: Section 2 recalls existing results for the interaction of anti-plane waves with screw
dislocations. It includes the behavior of coherent waves when many such dislocations are present, as well as a recent result
of Churochkin et al. [36] concerning the summability to all orders of the perturbation expansion needed to make sense
of the theory. Section 3 constructs the Bethe–Salpeter equation and establishes the Ward–Takahashi identity that relates
the coherent with the incoherent kernels. Section 4 solves the BS equation in the low frequency limit needed to obtain a
diffusion behavior and an expression for the diffusion coefficient (Eq. (97)) is obtained. Section 5 has a discussion and final
comments. A number of computations are carried out in several Appendices.

2. Interaction of anti-plane elastic waves with screw dislocations

The interaction of an anti-plane wave with a single dislocation was studied by Eshelby [2], Nabarro [1] and by Maurel
et al. [11]. The coherent behavior that emerges when an anti-plane wave interacts with many, randomly located screws,
was elucidated by Maurel et al. [17], using the following equation of motion in the frequency domain:

∇
2
+ k2β


v(x⃗, ω) = −V(0)(x⃗, ω)v(x⃗, ω) (1)

where v is particle velocity as a function of two-dimensional position x⃗ and frequency ω, k2β = ω2/c2T with c2T = µ/ρ, and
the potential V(0) is

V(0)(x, ω) =

N
n=1

An
(0)

∂

∂xa
δ(x⃗ − X⃗n

0 )
∂

∂xa


x⃗=X⃗n

0

, (2)

and

An
(0) =

µ

M


bn

ω

2

. (3)



Download English Version:

https://daneshyari.com/en/article/5500558

Download Persian Version:

https://daneshyari.com/article/5500558

Daneshyari.com

https://daneshyari.com/en/article/5500558
https://daneshyari.com/article/5500558
https://daneshyari.com

