
Information and Software Technology 73 (2016) 19–36

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A low-overhead, value-tracking approach to information flow security�

Kostyantyn Vorobyov a,∗, Padmanabhan Krishnan b, Phil Stocks a

a Centre for Software Assurance, Bond University, Gold Coast, Australia
b Oracle Labs, Brisbane, Australia

a r t i c l e i n f o

Article history:

Received 12 April 2014

Revised 9 December 2015

Accepted 15 December 2015

Available online 21 January 2016

Keywords:

Information leakage

Program instrumentation

Monitoring

a b s t r a c t

Context: Sensitive information such as passwords often leaks inadvertently because of implementation

defects.

Objective: Our objective is to use dynamic techniques to prevent information leakage before it occurs. We

also aim to develop techniques that incur low overheads, and are safe in the presence of aliasing.

Method: We use a dynamic approach to track secret values and safe locations. We assume that programs

have annotations which identify values and locations that need to be protected against disclosure. We

instrument a program with statements that record relevant values and locations and assertions to rele-

vant assignments to determine if they leak information. At run-time the values being assigned to unsafe

locations are analysed. If a particular assignment leads to information leakage an assertion violation is

triggered. We evaluate our approach by experimentation which uses our prototype implementation for C

programs to analyse security-oriented UNIX utilities and programs chosen from the SPEC CPU datasets.

Results: Our experiments show that the overhead to detect problems such as password disclosure in real

software does not exceed 1%. The overheads associated with detection of CWE security vulnerabilities in

real applications are still acceptable; however, tracking a large number of values incurs higher overheads

(over 10 times in certain cases).

Conclusion: Our dynamic approach to detecting information leaks can be used in various contexts. For a

program that tracks only a limited number of values the overhead is marginal. Thus, our instrumentation

can be used in release versions. However, if an application has a large number of secret values, our

technique is useful in a testing phase. The overheads in this case are too high for a real use, but still

within an acceptable range to be used for detection of potential leaks during testing.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The problem addressed by information leakage detection is to

ensure that data (i.e., a set of values in a program run) identified

as secret are not exposed externally, for example through a pub-

licly visible variable, or direct output by a print function. If the se-

cret values in a run of a program are known, the program can be

checked for information leakage by calculating dependencies be-

tween secret and publicly available data.

In imperative languages values are accessed by evaluating vari-

ables, which often reference actual values rather than storing

them. While it is possible to over-approximate the set of values

bound to variables using pure static methods, it is not possible to

� An initial version of this paper was presented at SEFM’12 [1].
∗ Corresponding author. Tel.: +61 401787874, +33 768139944.

E-mail addresses: kvorobyo@bond.edu.au (K. Vorobyov), paddy.krishnan@

oracle.com (P. Krishnan), pstocks@bond.edu.au (P. Stocks).

compute this exactly in general as the problem is undecidable [2].

Imprecise and scalable approximations, on the other hand, often

lead to false alarms. Since at run-time values are known, alias-

ing can be solved by dynamically tracking assignments of values

to variables during a program run. Therefore, a dynamic approach,

such as information flow [3–5] or taint analysis [6,7] is appropriate

for detection of information leakage. This is because such a tech-

nique captures every assignment and evaluates values for a partic-

ular program run. Tracking every assignment, however, often re-

sults in high overhead [5,8,9].

The key research question we address is the design and imple-

mentation of run-time monitors that are able to detect and prevent

hitherto unknown violations of information flow in real programs.

This technique prevents disclosure of confidential information at

run-time by aborting the execution of a program run that leaks se-

cret data. We also address the question of reducing the high over-

heads that are often associated with tracking the flow of sensitive

data at execution time. As noted by others [10–12], run-time mon-

http://dx.doi.org/10.1016/j.infsof.2015.12.006

0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2015.12.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.12.006&domain=pdf
mailto:kvorobyo@bond.edu.au
mailto:paddy.krishnan@\penalty -\@M oracle.com
mailto:pstocks@bond.edu.au
http://dx.doi.org/10.1016/j.infsof.2015.12.006


20 K. Vorobyov et al. / Information and Software Technology 73 (2016) 19–36

itoring of programs that incur heavy overhead often restricts its

usage to only a subset of realistic programs. In the absence of ver-

ified programs, run-time monitoring with a low overheads permits

the detection of unknown information flow violations in realistic

programs.

Our technique analyses program values and has the ability to

identify whether a disclosed value represents an information leak

with respect to the values considered secret at run-time. This is

different to an information flow or a taint analysis that typically

analyses a program with respect to its variables and tracks security

labels or propagates taint marks. Tracking only a handful of values

whose disclosure constitutes information leakage reduces the over-

heads associated with discovering leakage. The scope of our analy-

sis is therefore to detect leakage of values in their entirety. Detec-

tion of values that leak via parts (e.g., bit by bit) is out of scope of

this paper.

We assume that the statements that generate secret data are

identified, for example using manual annotations to the program.

We view such annotations as an input to our technique, thus the

question of identification of secret data is out of the scope of this

paper. The annotations are used to instrument the program with

statements that record secret values that should not leak. Further,

for any potentially leaking assignment we inject an assertion that

fails if a concrete value used in the assignment belongs to the

tracked set of secret values. During its execution, the instrumented

program captures the secret values and uses assertions to verify

the safety of potentially leaking assignments with respect to the

secret values received by the program for a particular run.

Our approach has been applied to an unsafe memory model. It

detects leakage in programs written in memory-unsafe languages,

e.g., C, where precise information leakage analysis is a challenge

due to such features as pointer arithmetic, weak type system or

dynamic memory allocation. The question of precise and scalable

information leakage analysis in memory-unsafe environments is

not addressed in full by the existing techniques that either use safe

models [13,14], or restrict the language features to a manageable

subset [15]. Note that our approach does not prevent memory cor-

ruption errors such as buffer overflows, it only prevents secret val-

ues from leaking assuming that a program under analysis is mem-

ory safe.

Our approach is supported by a prototype implementation for

C programs that is used to conduct experiments. The results of

our initial experiments show that our approach can be used to ad-

dress practical problems, such as preventing leakage of passwords.

Monitoring the safety of password flow in a number of security-

oriented UNIX utilities indicates that this dynamic analysis of se-

cret values results in an extremely low overhead of 1% and finds

information leakage in real security software. Further experimen-

tation demonstrates that our technique is a good fit for analysing

programs for security vulnerabilities related to information leakage

stressed by security-oriented communities, such as the Community

Developed Dictionary of Software Weakness Types (CWE) [16]. We

also report on our experiments using a number of computationally

expensive programs from the SPEC datasets. This addresses issues

related to information leaks via the de-allocated but not cleared

out memory, improper handling of sensitive data (e.g., plain-text

storage or hard-coding of passwords), exposure of sensitive infor-

mation through standard output channels and information leaks

via temporary files and file handles. The results show that our ap-

proach handles complex programs, such as gcc, while still yield-

ing acceptable overheads. Finally, we use the same properties to

analyse popular security-oriented software such as openssh and

ccrypt and show that the overheads incurred by our approach

remain low.

The rest of the paper is organised as follows. Section 2 presents

our technique at an abstract level and Section 3 shows how to ap-

ply it to C programs. Section 4 presents the results of the exper-

imentation with the prototype implementation of our technique.

Finally, Section 5 reviews related work and Section 6 offers our

conclusions.

2. Value tracking

Our approach assumes that secret values are specified by an-

notations. That is, program locations of assignments that transfer

secret values to program variables are marked. An input program

P is instrumented (by a series of source-to-source transformations)

with statements that track secret values and safe locations, and as-

sertions that check the safety of assignments with respect to the

tracked values. This generates a monitored program P′. A run of

P′ observes the execution of the original program P by detecting

information leakage by assignment of secret values to unsafe loca-

tions. A program run that has no detected assertion failures does

not leak the secret values captured at run-time by the annotated

assignments.

In this section we present our approach for an abstract imper-

ative language. We first describe the details of the imperative lan-

guage used to specify transformations, the abstract memory model,

and the operational semantics of the language. We then informally

describe our approach and present the set of compositional trans-

formation rules used to derive a monitored program that prevents

leakage of secret values at run-time. Further, we give the semantics

of instrumented commands and describe behaviours of monitored

programs. Finally, we present a proof that our monitor does not

interfere with the memory state of the original program and pre-

vents all information leaks that occur due to assignment of secret

data to unsafe locations.

2.1. Syntax

Fig. 1 shows the syntax of the abstract imperative language we

use to describe our approach. Variables v (given by the set Var)

are partitioned into variables that hold primitive values (indicated

by x) and variable references (ptr v), where ptr is a syntactic type

annotation.

Expressions are given by the set Expr. Expressions e ∈ Expr con-

sist of numerals n, variables v, composite expressions e⊕e (where

⊕ is a binary operator), and operator addressof on program vari-

ables.

Commands c ∈ Comm (where Comm is the set of the language

commands) consist of atomic commands skip, variable definitions

(def(v)), assignments (v := e), annotated assignments (〈v := e〉),

conditionals (if e then c1 else c2), loops (while e do c) and sequen-

tial composition of commands (c1; c2).

Fig. 1. Abstract language.



Download English Version:

https://daneshyari.com/en/article/550072

Download Persian Version:

https://daneshyari.com/article/550072

Daneshyari.com

https://daneshyari.com/en/article/550072
https://daneshyari.com/article/550072
https://daneshyari.com

