
Information and Software Technology 73 (2016) 37–51

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A component recommender for bug reports using Discriminative

Probability Latent Semantic Analysis

Meng Yan b, Xiaohong Zhang a,b,c,∗, Dan Yang b, Ling Xu b, Jeffrey D. Kymer b

a State Key laboratory of Coal Mine Disaster Dynamics and Control, Chongqing 400044, PR China
b School of Software Engineering, Chongqing University, Chongqing 401331, PR China
c Key Laboratory of Dependable Service Computing in Cyber Physical, Society Ministry of Education, Chongqing 400044, PR China

a r t i c l e i n f o

Article history:

Received 9 February 2015

Revised 15 January 2016

Accepted 16 January 2016

Available online 23 January 2016

Keywords:

Bug reports

Discriminative topic model

Component recommendation

Bug triage

a b s t r a c t

Context: The component field in a bug report provides important location information required by devel-

opers during bug fixes. Research has shown that incorrect component assignment for a bug report often

causes problems and delays in bug fixes. A topic model technique, Latent Dirichlet Allocation (LDA), has

been developed to create a component recommender for bug reports.

Objective: We seek to investigate a better way to use topic modeling in creating a component recom-

mender.

Method: This paper presents a component recommender by using the proposed Discriminative Probability

Latent Semantic Analysis (DPLSA) model and Jensen–Shannon divergence (DPLSA-JS). The proposed DPLSA

model provides a novel method to initialize the word distributions for different topics. It uses the past

assigned bug reports from the same component in the model training step. This results in a correlation

between the learned topics and the components.

Results: We evaluate the proposed approach over five open source projects, Mylyn, Gcc, Platform, Bugzilla

and Firefox. The results show that the proposed approach on average outperforms the LDA-KL method by

30.08%, 19.60% and 14.13% for recall @1, recall @3 and recall @5, outperforms the LDA-SVM method by

31.56%, 17.80% and 8.78% for recall @1, recall @3 and recall @5, respectively.

Conclusion: Our method discovers that using comments in the DPLSA-JS recommender does not always

make a contribution to the performance. The vocabulary size does matter in DPLSA-JS. Different projects

need to adaptively set the vocabulary size according to an experimental method. In addition, the corre-

spondence between the learned topics and components in DPLSA increases the discriminative power of

the topics which is useful for the recommendation task.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Bug report is a fundamental artifact for informing developers

about software problems. Research on mining bug report reposi-

tories has demonstrated success in a variety of software activities,

such as tracing the evolution of the project [1], evaluating devel-

oper’s expertise and contribution [2] and improving the software

product quality [3]. However, the use of a bug report depends

on correct triaging. Every new bug report has to be triaged to

a component when submitted. This allows an efficient fixing by

the appropriate development team which is responsible for the

component [4]. Previous research reported that bug reporters

frequently make inaccurate decisions in assigning the categorical

fields such as the component in a bug report [5]. Unfortunately,

∗ Corresponding author at: School of Software Engineering, Chongqing University,

Chongqing 401331, PR China. Tel.: +86 15923238399.

E-mail address: xhongz@cqu.edu.cn (X. Zhang).

bug reports are always triaged manually, which is time consuming

and error prone. Take Eclipse as an example, approximately 25% of

the bug reports need to be reassigned because of triaging mistakes

[6], and it costs nearly two person-hours per day in triaging bug

reports [7]. To assist correct bug triaging, this paper presents a

novel Discriminative Probability Latent Semantic Analysis (DPLSA)

based component recommender, in which a recommender is

provided with a small list of component suggestions.

Across the popular issue tracking systems, such as JIRA1 and

Bugzilla2, the bug reports submitted by reporters possess the fol-

lowing common features: first, there are a variety of mandatory

and categorical fields like component, product, status and assigned

to. Second, there are some other fields which are non-structured

natural language text, including report title, detail description and

1 http://www.atlassian.com/software/jira/, verified 2015 /08/13.
2 http://www.bugzilla.org/, verified 2015 /08/13.

http://dx.doi.org/10.1016/j.infsof.2016.01.005

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.01.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.01.005&domain=pdf
mailto:xhongz@cqu.edu.cn
http://www.atlassian.com/software/jira/
http://www.bugzilla.org/
http://dx.doi.org/10.1016/j.infsof.2016.01.005


38 M. Yan et al. / Information and Software Technology 73 (2016) 37–51

comments which are written by developers or users. Third, each

free-form text field in the bug reports contains rich information

which reflects different facts about the bug. For example, the full

free-form description text field reflects the detailed bug effects and

provides indispensable conditions to track the bug. By utilizing

these features, researches have proposed a variety of approaches

to investigate different bug report related activities, such as du-

plicate bug report detection [8], bug report summarization [9] and

bug triaging recommendations [6]. In this work, we focus on creat-

ing a component recommender by utilizing the full free-form text

fields including title, description and comments.

This proposed method is motivated by the recent success of

topic modeling in mining bug reports [4,10-13]. The most similar

work is a Latent Dirichlet Allocation (LDA) [14] based component

recommender proposed by Somasundaram and Murphy [4]. Al-

though they achieved a state-of-art performance, there are still

several unsolved issues in this line of research. First, a critical

issue in topic modeling is how many topics should be sought [15].

There is no agreed-upon method for choosing the right number of

topics among different datasets. In the similar work proposed by

Somasundaram and Murphy [4], the number of topics varied from

10 to 120 and it was determined by using a series of experiments.

Second, it is rarely discussed that the comments in bug reports

decrease the performance of the recommendation or improve it.

It is hasty to decide whether or not to consider comments. There

are different decisions in related works. For example, Naguib et al.

[16] did not adopt the comments in building the recommender.

Shokripour et al. [17], Xuan et al. [18] and Zhang et al. [19]

used the comments in their recommendation works. Third, the

vocabulary in bug reports has an impact on the bug assignment

accuracy [20]. Meanwhile, vocabulary plays a significant role in

topic modeling [14]. However, it is rarely discussed whether the

vocabulary size impacts the component recommender based on

topic modeling.

To address the aforementioned issues, we present a Discrim-

inative Probability Latent Semantic Analysis (DPLSA) model with

discriminative power to create a recommender that assists with

the component assignment task. We divide our recommender

into three phases, namely the training phase, the testing phase

and the recommendation phase. In the training phase, we use

past assigned bug reports as our training datasets. The number

of topics is simply set to the number of components. We develop

a novel method to initialize the word distributions for different

topics. This introduces the past component labels to initialize

the topic-conditional probability of a particular word. Thus, the

topics are estimated in a supervised way. As a result, it cre-

ates a correspondence between learned topics and components.

This increases the discriminative power of the learned topics

and overcomes the difficult in determining an appropriate topic

number in LDA. In the testing phase, given a new bug report,

we fix the obtained word-topic distribution in the training phase

and compute the test sample’s topic distribution by the standard

EM algorithm of Probability Latent Semantic Analysis (PLSA). In

the recommendation phase, the component recommendations

are decided by ranking the divergence with each component’s

centroid topic representation in the training set. A small list of

top-k most suitable components are recommended. The similarity

with Somasundaram and Murphy [4] is that both of us use the

topic modeling and divergence measuring technique. The main

differences from Somasundaram and Murphy [4] lie in: first, we

investigate the impacts of comments and vocabulary size which is

not discussed in their work. Second, we use DPLSA instead of LDA.

In summary, the contributions in our paper are threefold:

• We propose DPLSA, which performs an initialization method

in the PLSA modeling step. It assigns the category-conditional

probability of a specific word conditioned on the correspond-

ing topic by using the assigned bug reports. Such that a corre-

spondence between components and topics is created. It is uti-

lized to enhance the discrimination of the estimated topics and

overcomes the difficulty in choosing the right number of topics.

(See Section 3.2.1).

• We evaluate our DPLSA-JS recommender on five open source

projects to validate the effectiveness. Compared with two LDA

based methods [4], we show that DPLSA-JS outperforms LDA-KL

and LDA-SVM on the component recommendation problem by

a substantial range. (See Section 4.5.1).

• We explore the impact of vocabulary size and comments on

the recommendation performance by conducting a comparative

study on five datasets. As a result, we find that the vocabulary

size and whether or not using the comments impact the rec-

ommendation performance (See Sections 4.5.2 and 4.5.3).

The paper is structured as follows: Section 2 presents the

related work of our research, including bug triage recommenders,

topic modeling in mining bug reports and similar supervised

topic models. We describe our research preparation, models and

techniques in Section 3. Section 4 presents the research ques-

tions, sketches the experiment design, results and comparisons.

Section 5 provides the threats to validity, including internal va-

lidity and external validity. Then at last in Section 6, we draw a

conclusion about our findings and provide our future plans.

2. Related work

In this section, we discuss related literature from three aspects:

bug triage recommenders, topic modeling in mining bug reports

and similar supervised topic models.

2.1. Bug triage recommenders

A variety of techniques have been investigated to guide the bug

triaging process, such as duplicate bug report detection [8,21,22],

developer recommenders [7,12,13,16,17,23-27] and component rec-

ommenders [4-6].

Many researches have focused on automating the process of

detecting duplicate bug reports by analyzing the free-text fields

which is also used in this work. Several kinds of methods were

employed, such as the statistical model, vector space model (VSM)

[28], and TF-IDF [21]. In 2005, Anvik et al. [22] built a statistical

model, using cosine similarity and detected 28% of all duplicate

reports on Firefox. Hiew [29] improved on it by applying VSM to

detect duplicate bug reports. The TF-IDF term weighting measure-

ment was employed in their work and achieved a 50% recall and

29% precision on Firefox and 20% and 14% for Eclipse, respectively.

The similarity between their work and this work is the textual pro-

cessing on non-structured natural language fields of bug reports.

While they differ from our work in how the training data is la-

beled and what data is used.

There have been several researches on creating developer

recommenders which automatically assign a bug report to a

particular developer. Cubranic [30] first modeled a bug report

developer recommender by using a text classification method.

After that, Anvik et al. [6,7] enhanced the above work by removing

inactive and less active developers (according to the count of re-

cent bug fixes). In their experiments on five open source projects,

they increased the precision accuracy up to 64% by using three

machine learning classifiers, namely C4.5, Naive Bayes and SVM.

Based on these works, several approaches such as bug tossing

(i.e., bug reports are reassigned to other developers) and source

location based methods were proposed to enhance the existing

performance. For example, Jeong et al. [24] presented an enhanced



Download English Version:

https://daneshyari.com/en/article/550074

Download Persian Version:

https://daneshyari.com/article/550074

Daneshyari.com

https://daneshyari.com/en/article/550074
https://daneshyari.com/article/550074
https://daneshyari.com

