
Information and Software Technology 73 (2016) 81–100

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Understanding the API usage in Java

Dong Qiu a, Bixin Li a,∗, Hareton Leung b

a School of Computer Science and Engineering, Southeast University, Nanjing, China
b Department of Computing, Hong Kong Polytechnic University, Kowloon, Hong Kong

a r t i c l e i n f o

Article history:

Received 7 September 2015

Revised 25 January 2016

Accepted 25 January 2016

Available online 3 February 2016

Keywords:

API usage

Empirical study

Java

a b s t r a c t

Context: Application Programming Interfaces (APIs) facilitate the use of programming languages. They

define sets of rules and specifications for software programs to interact with. The design of language API

is usually artistic, driven by aesthetic concerns and the intuitions of language architects. Despite recent

studies on limited scope of API usage, there is a lack of comprehensive, quantitative analyses that explore

and seek to understand how real-world source code uses language APIs.

Objective: This study aims to understand how APIs are employed in practical development and explore

their potential applications based on the results of API usage analysis.

Method: We conduct a large-scale, comprehensive, empirical analysis of the actual usage of APIs on Java,

a modern, mature, and widely-used programming language. Our corpus contains over 5000 open-source

Java projects, totaling 150 million source lines of code (SLoC). We study the usage of both core (official)

API library and third-party (unofficial) API libraries. We resolve project dependencies automatically, gen-

erate accurate resolved abstract syntax trees (ASTs), capture used API entities from over 1.5 million ASTs,

and measure the usage based on our defined metrics: frequency, popularity and coverage.

Results: Our study provides detailed quantitative information and yield insight, particularly, (1) confirms

the conventional wisdom that the usage of APIs obeys Zipf distribution; (2) demonstrates that core API

is not fully used (many classes, methods and fields have never been used); (3) discovers that deprecated

API entities (in which some were deprecated long ago) are still widely used; (4) evaluates that the use

of current compact profiles is under-utilized; (5) identifies API library coldspots and hotspots.

Conclusions: Our findings are suggestive of potential applications across language API design, optimiza-

tion and restriction, API education, library recommendation and compact profile construction.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Syntax and semantics define a programming language. Appli-

cation Programming Interfaces (APIs) facilitate its use. Most of

today’s software projects heavily depend on the use of API li-

braries [1]. They improve code reuse, reduce development cost and

promote programmers’ productivity. However, API design has been

artistic and biased, driven by aesthetic concerns and the intuitions

of API designers. They usually have limited knowledge on how

programmers actually use the API, which leads to many unnatu-

ral and rarely used API features being introduced, while not some

expected ones [2,3]. Meanwhile, the ever-growing APIs (increas-

ing features have been introduced) remain a significant barrier to

∗ Corresponding author. Tel.: +86 25 52090877; fax: +86 25 52090879.

E-mail addresses: dongqiu@seu.edu.cn (D. Qiu), bx.li@seu.edu.cn (B. Li),

hareton.leung@polyu.edu.hk (H. Leung).

novice programmers [4]. In addition, API libraries have become one

of the most influential factors for the choice of programming lan-

guages [5]. Poor design of the APIs increases the learning curve

for developers and greatly influence their productivity. Therefore,

it is significant to understand the actual usage of the current API

libraries, and optimize the designs to promote API usability for pro-

grammers.

Studying how a large number of real-world programs use APIs

can help validate or disprove the many popular “theories” con-

cerning what APIs are most adopted, most useful, easiest to use;

whether APIs have been fully used by the programmers, etc. that

abound concerning programming in popular literature and on the

Internet. For language education, the gap between APIs and their

actual usage may guide pedagogy, giving teachers insight into what

is common (and perhaps should be) and rare (and perhaps should

not be). It also guides novice programmers to select a proportion-

ally smaller fraction, i.e. most essence of the entire APIs to reduce

the cost of learning. Language API designers may leverage data on

http://dx.doi.org/10.1016/j.infsof.2016.01.011

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.01.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.01.011&domain=pdf
mailto:dongqiu@seu.edu.cn
mailto:bx.li@seu.edu.cn
mailto:hareton.leung@polyu.edu.hk
http://dx.doi.org/10.1016/j.infsof.2016.01.011


82 D. Qiu et al. / Information and Software Technology 73 (2016) 81–100

actual API usage to optimize the design of API libraries, e.g. sim-

plifying unpopular APIs and identifying unused APIs that could be

eliminated. In addition, API usage analysis is crucial in mining API

usage patterns [6–9], and offers supports for API migration [10,11].

It also produces a positive effect in software maintenance [12].

To this end, we perform a large-scale empirical study on a di-

verse corpus of over 5000 real-world Java projects to gain insight

into how APIs are used in practice. We retrieve project depen-

dencies with the aid of Maven [13], generate accurate resolved ab-

stract syntax trees (ASTs) for approximately 150 million SLoC, cap-

ture used API entities (i.e. packages, classes, methods and fields)

from over 1.5 million ASTs, and measure the usage based on our

defined metrics: frequency (whether an API has been frequently

used), popularity (whether an API has been widely used) and cov-

erage (whether an API has been fully used). We analyze almost all

the API libraries that are adopted by practical projects, including

both core API and third-party APIs. Besides, we investigate some

extra issues, e.g. construction of API subsets and selection of the

versions of the third-party APIs. In summary, this paper makes the

following contributions:

• It presents a large-scale, comprehensive, empirical analysis of

the use of APIs in a modern programming language, namely

Java;

• This is the first work to deeply study both core API and third-

party APIs, including the use of deprecated API entities. It is

also the first to study how API usage guide the design of the

compact profiles (i.e. subset of APIs);

• Some interesting results are demonstrated: (1) 1% of the most-

used packages account for 80% of all API usage, while 70% least-

used packages are used < 0.5% of all API usage and 50% only <

0.1%; (2) 15.3% of the classes, 41.2% of the methods and 41.6%

of the fields from the core API are never used; (3) 9.5% of the

packages have all subordinative methods never used and 29.2%

of the classes have all subordinative methods never used; (4)

51.1% of deprecated classes, 43.5% of the deprecated methods

and 18.1% of the deprecated fields from the core API have been

adopted.

Taken together, our results permit API designers to empirically

consider whether the design of the API facilitates programmers’

development based on their actual usage. Our study also identifies

both hotspots (i.e. frequently and widely used APIs) and coldspots

(i.e. rarely and narrowly used APIs) to inform programmers to se-

lectively learn and adopt the APIs. For example, if the APIs are

never used, alerting programmers to use them cautiously in prac-

tical development is indispensable. In addition, the results assist to

construct appropriate subsets of the APIs, that can be employed in

either resource-constrained devices or high security environment.

We believe that our work enables data-driven language API design,

optimization and simplification, analogous to how Cocke’s study at

IBM in the 1970s on the actual usage of CISC instructions eventu-

ally led to the RISC architectures [14].

2. Methodology

This section first discusses the research questions studied,

presents the basic information of the corpus used in this study

then, and illustrates the process of how we set up and perform

the experiments.

2.1. Research questions

The goal of this study is to answer the key research ques-

tion: How programming language APIs are used in real open-source

projects. To better investigate the question, we focus on the follow-

ing dimensions:

Table 1

An overview of the Java corpus.

Corpus summary

Repository Github

No. of projects 5185

No. of files 1,595,600

Source lines of code 152,341,840

No. of imports 12,518,834

No. of class use 75,076,400

No. of field use 34,149,616

No. of method use 59,225,800

No. of unique class use 2,034,177

No. of unique field use 5,031,510

No. of unique method use 5,403,540

Global view of API usage. Most of current software projects heav-

ily depend on the use of API libraries. Understanding the API us-

age provenance can provide an overview of API use distribution, i.e.

how much of the API entities are reused from existing APIs (core

APIs or third-party APIs) and how much of them are designed and

created specific to projects. We are also interested in investigating

how much of the API entities are adopted to construct a project

in general and further validate whether the scale of the software

is correlated with the API usage. In addition, we desire to confirm

the conventional wisdom that the use of API entities obeys Zipf

distribution.

Core API usage. Core API library is essential API that facilitates the

use of the programming language, which is ordinarily developed by

official organizations which maintain such programming language

(e.g. Java SE Development Kit, i.e. JDK from Oracle [15]). However,

as new features have been introduced increasingly, the scale of the

core API library is growing rapidly, consuming more resources for

devices and increasing the learning curve for novice programmers.

It is significant to understand the utilization of the core API, i.e.

whether all API entities from the core library have been fully used.

The introduction of a new concept, compact profiles, which are sub-

sets of the entire core API, motivates us to inspect the utilization of

compact profiles analogously. In addition, identifying hotspots and

coldspots can be suggestive of optimizing the design of current core

APIs and guiding novices to learn the essence preferentially. We

also investigate the use of deprecated API entities.

Third-party API usage. Third-party API libraries are supplements

to the core API library, providing extra functionalities that are

not supported by the core API or analogous functionalities

with preferable implementations. Many of them are developed

and maintained by reputable commercial companies (e.g. guava
from Google) or open-source communities (e.g. commons-∗ from

Apache). We are interested in investigating how heavily a project

depends on third-party APIs, i.e. how much of third-party API li-

braries are required to construct a project in general. In addition, a

library is available in multiple versions. It would be interesting to

figure out how many distinct versions a typical library has in gen-

eral. It is also significant to investigate how programmers select

and adopt concrete versions.

2.2. Gathering the corpus

Our large-scale corpus consists of 5185 (including over 1.5M

Java files and 15M non-comment lines of code) open-source and

real-world Java projects whose source code is available from

Github, one of the most popular repository hosting services. We

rigorously select applications based on the popularity by synthet-

ically considering their size of watchers, stars and forks provided

by Github. Table 1 lists the corpus summary information. The cor-

pus is diverse, covering various application domains and size. It



Download English Version:

https://daneshyari.com/en/article/550077

Download Persian Version:

https://daneshyari.com/article/550077

Daneshyari.com

https://daneshyari.com/en/article/550077
https://daneshyari.com/article/550077
https://daneshyari.com

