
Automated refactoring to the NULL OBJECT design pattern

Maria Anna G. Gaitani, Vassilis E. Zafeiris, N.A. Diamantidis, E.A. Giakoumakis ⇑
Department of Informatics, Athens University of Economics and Business, 76 Patission Str., Athens 104 34, Greece

a r t i c l e i n f o

Article history:
Received 5 July 2014
Received in revised form 30 October 2014
Accepted 30 October 2014
Available online 8 November 2014

Keywords:
Refactoring
Design patterns
Null Object
Optional fields
Null checks

a b s t r a c t

Context: Null-checking conditionals are a straightforward solution against null dereferences. However,
their frequent repetition is considered a sign of poor program design, since they introduce source code
duplication and complexity that impacts code comprehension and maintenance. The NULL OBJECT design
pattern enables the replacement of null-checking conditionals with polymorphic method invocations
that are bound, at runtime, to either a real object or a Null Object.
Objective: This work proposes a novel method for automated refactoring to NULL OBJECT that
eliminates null-checking conditionals associated with optional class fields, i.e., fields that are not
initialized in all class instantiations and, thus, their usage needs to be guarded in order to avoid null
dereferences.
Method: We introduce an algorithm for automated discovery of refactoring opportunities to NULL

OBJECT. Moreover, we specify the source code transformation procedure and an extensive set of refac-
toring preconditions for safely refactoring an optional field and its associated null-checking condi-
tionals to the NULL OBJECT design pattern. The method is implemented as an Eclipse plug-in and is
evaluated on a set of open source Java projects.
Results: Several refactoring candidates are discovered in the projects used in the evaluation and their
refactoring lead to improvement of the cyclomatic complexity of the affected classes. The successful
execution of the projects’ test suites, on their refactored versions, provides empirical evidence on the
soundness of the proposed source code transformation. Runtime performance results highlight the
potential for applying our method to a wide range of project sizes.
Conclusion: Our method automates the elimination of null-checking conditionals through refactoring
to the NULL OBJECT design pattern. It contributes to improvement of the cyclomatic complexity of clas-
ses with optional fields. The runtime processing overhead of applying our method is limited and
allows its integration to the programmer’s routine code analysis activities.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Dereferencing null object references leads to runtime errors
and, thus, causes program termination or abnormal operation. In
order to avoid such errors, the programmer needs to decide which
object references can have a null value and introduce appropriate
null-checking conditional statements to avoid null dereferences.
Compile-time detection of null dereferences is an effective
approach for the discovery of many null-related bugs [1] that is
not yet integrated in popular languages such as Java or C#. Static
code analysis techniques are, also, applied for the discovery of null

dereferences (e.g. [2,3]) and are gradually integrated in popular
code review tools, such as FindBugs for Java [4,5].

Although null-checking conditionals are a straightforward solu-
tion against null dereferences, their frequent repetition is, often,
considered a code ‘‘smell’’, i.e. a sign of poor program design. Fow-
ler [6] and Kerievsky [7] document this code ‘‘smell’’, in their books
on software refactoring, as a source of code duplication that, also,
increases code complexity and, thus, impacts its comprehension
and maintenance. Fowler [6] focuses on repeated null checks, scat-
tered in the code of a method or class, that refer to a specific object
reference. Kerievsky [7] emphasizes on null checks that involve
class fields. Both works suggest the elimination of the null-check-
ing conditionals through refactoring to the NULL OBJECT design pat-
tern [8,9]. The NULL OBJECT hides the absence of an object (null
value) with a substitutable alternative object, namely the Null
Object, that has the same interface as the real object, but provides
a default ‘‘do nothing’’ behavior [9]. The term default ‘‘do nothing’’

http://dx.doi.org/10.1016/j.infsof.2014.10.010
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Patission 76, 104 34 Athens, Greece. Tel.: +30
2108203183; fax: +30 2108203275.

E-mail addresses: mariannag17@gmail.com (M.A.G. Gaitani), bzafiris@aueb.gr
(V.E. Zafeiris), nad@aueb.gr (N.A. Diamantidis), mgia@aueb.gr (E.A. Giakoumakis).

Information and Software Technology 59 (2015) 33–52

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.10.010&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.10.010
mailto:mariannag17@gmail.com
mailto:bzafiris@aueb.gr
mailto:nad@aueb.gr
mailto:mgia@aueb.gr
http://dx.doi.org/10.1016/j.infsof.2014.10.010
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


behavior denotes that all methods of the Null Object class are
implemented so as to either have an empty body or return default
results. The lifecycle of a Null Object ends with the assignment of a
non-null value to the object reference.

The NULL OBJECT design pattern enables the replacement of null-
checking conditionals with polymorphic method invocations that
are bound, at runtime, to either a real object or a Null Object. The
pattern removes duplicate code fragments that are relevant to (a)
null-checks on the same object references and (b) repeated ‘‘do
nothing’’ behavior that is executed in the case of a null reference.
The latter is extracted to appropriate methods of the Null Object
class. Besides its contribution to code simplicity, NULL OBJECT enables
easy and safe program extensions. Specifically, adding method
invocations to a potentially null object reference gets simpler
and less error prone, since the programmer is not required to
remember and introduce relevant null checks. Finally, NULL OBJECT

increases reusability, as instances of a Null Object class can be used
in multiple cases of null-checks on the same object type.

This paper deals with the problem of automated refactoring to
the NULL OBJECT design pattern. It complements the works of Fowler
[6] and Kerievsky [7], focusing on the mechanics of the manual
application of the refactoring, with a novel method for automated
discovery of null-checking conditionals that can be effectively
refactored to NULL OBJECT. Our analysis focuses on special cases of
null-checking conditionals that are encountered in classes with
optional collaborators, i.e., with fields that are not always initial-
ized. These conditionals protect optional field dereferences and
enclose the behavior of an ‘‘empty’’ collaborator. Moreover, we
specify an extensive set of refactoring preconditions that mark
cases that can be safely refactored without changing the external
behavior of the system. The refactoring identification procedure
is complemented with a detailed description of the source code
transformation for applying the NULL OBJECT design pattern to a
given optional field and its respective null-checking conditionals.
Our method for automated refactoring to NULL OBJECT has been
implemented as part of the JDeodorant Eclipse plug-in [10], a tool
for the automation of complex Java code refactorings. Moreover, it
has been experimentally evaluated on a set of open source Java
projects. Several refactoring candidates have been discovered in
these projects and their refactoring lead to improvement of the
cyclomatic complexity of the affected classes. The successful
execution of the projects’ test suites, on their refactored versions,
provides empirical evidence on the soundness of the proposed
source code transformation. Finally, runtime performance results
highlight the potential for applying our method to a wide range
of project sizes.

The rest of this paper is structured as following: Section 2 pre-
sents relevant work on the research area of refactoring to design
patterns. Section 3 presents the NULL OBJECT design pattern, its alter-
native implementations and introduces appropriate terminology
that will be used in this paper. Section 4 specifies our method for
automated identification of refactoring candidates and their elim-
ination through the NULL OBJECT design pattern. Section 5 presents
an evaluation of this work on the basis of a prototype implementa-
tion integrated to the JDeodorant Eclipse plug-in [10]. Finally,
Section 6 summarizes the conclusions of this work.

2. Related work

Our work contributes to the research area of automated refac-
toring to design patterns. Refactoring to patterns aims at the elim-
ination of design flaws through the introduction of appropriate
design patterns. The automation of refactoring tasks enables inte-
gration of the continuous design improvement practice to the
development workflow. This section provides a review on methods

for automated refactoring to design patterns. It encompasses
approaches relevant to both structural (ABSTRACT FACTORY, COMPOSITE)
and behavioral (DECORATOR, TEMPLATE METHOD, STATE/STRATEGY) design
patterns. As concerning refactoring to NULL OBJECT, this work is the
first that studies its automation. For an extensive review on the
broader research area of software refactoring, the reader may refer
to the work of Mens and Tourwe [11].

2.1. Abstract Factory

Refactoring to ABSTRACT FACTORY is among the earlier approaches
on refactoring to patterns. Specifically, Tokuda and Batory [12] pro-
posed the introduction of the design pattern as a composition of
parameterized object-oriented transformations. The method pro-
vides a specification of these primitive transformations and applies
them through appropriate tool support. The introduction of the
ABSTRACT FACTORY is demonstrated through a simple case study.

Refactoring to design patterns is also treated as a series of mini-
transformations in the methodology proposed by Cinneide and
Nixon [13]. A mini-transformation comprises pre-conditions,
post-conditions, transformation steps and an argument over how
the mini-transformation supports behavior preservation after its
application. The methodology is primarily focused on structure-
rich, rather than behavioral patterns, and is applied to refactoring
to ABSTRACT FACTORY.

A logic programming approach to refactoring to patterns has
been proposed by Jeon et al. [14]. The method employs logic infer-
encing for the identification of refactoring opportunities in a Java
code base, and the, subsequent, selection of an appropriate strat-
egy for source code transformation. Inference is based on the
extraction of system design from Java code and its representation
as a set of Prolog-like predicates that are then converted to Prolog
facts. Inference rules are, also, specified for each target pattern,
that are transformed to Prolog rules. The identification of refactor-
ing opportunities takes place through issuing of Prolog queries. The
method applied for the discovery of refactoring candidates to
ABSTRACT FACTORY. The application of the refactoring is based on the
mini-transformations approach of Cinneide and Nixon [13].

2.2. Composite

Jebelean et al. [15] use logic metaprogramming for the detec-
tion of incorrect applications of the COMPOSITE design pattern. The
approach involves transformation of the Java project’s Abstract
Syntax Tree (AST) into Prolog facts through the JTransformer
engine [16]. Problematic code fragments are identified through
the definition of appropriate Prolog rules. Ajouli et al. [17] focus
on the automated transformation of a VISITOR pattern instance to
COMPOSITE and vice versa. The transformation is based on a set of
refactoring preconditions that ensure its correct application and
reversibility. Moreover, the authors present variations of the base
transformation for handling special cases of relaxed preconditions.

2.3. Decorator

Rajesh and Janakiram [18] employ logic programming for the
identification of refactoring candidates (or Intent Aspects in
the terminology of the paper) to the DECORATOR design pattern.
The method involves construction of the Java project’s AST and
generation of Prolog facts that reflect its design. Fact generation
is based on Predicate Templates, i.e. predefined facts that are
introduced to the facts-base during traversal of the project’s AST.
Moreover, the authors specify Prolog rules for the identification
of refactoring candidates to DECORATOR. The application of the
refactoring is enabled through a third party refactoring tool.

34 M.A.G. Gaitani et al. / Information and Software Technology 59 (2015) 33–52



Download English Version:

https://daneshyari.com/en/article/550134

Download Persian Version:

https://daneshyari.com/article/550134

Daneshyari.com

https://daneshyari.com/en/article/550134
https://daneshyari.com/article/550134
https://daneshyari.com

