
An empirical study on software defect prediction with a simplified
metric set

Peng He a,b, Bing Li c,d, Xiao Liu a,b, Jun Chen b,e, Yutao Ma b,d,⇑
a State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China
b School of Computer, Wuhan University, Wuhan 430072, China
c International School of Software, Wuhan University, Wuhan 430079, China
d Research Center for Complex Network, Wuhan University, Wuhan 430072, China
e National Engineering Research Center for Multimedia Software, Wuhan University, Wuhan 430072, China

a r t i c l e i n f o

Article history:
Received 28 February 2014
Received in revised form 18 November 2014
Accepted 20 November 2014
Available online 28 November 2014

Keywords:
Defect prediction
Software metrics
Metric set simplification
Software quality

a b s t r a c t

Context: Software defect prediction plays a crucial role in estimating the most defect-prone components
of software, and a large number of studies have pursued improving prediction accuracy within a project
or across projects. However, the rules for making an appropriate decision between within- and cross-pro-
ject defect prediction when available historical data are insufficient remain unclear.
Objective: The objective of this work is to validate the feasibility of the predictor built with a simplified
metric set for software defect prediction in different scenarios, and to investigate practical guidelines for
the choice of training data, classifier and metric subset of a given project.
Method: First, based on six typical classifiers, three types of predictors using the size of software metric
set were constructed in three scenarios. Then, we validated the acceptable performance of the predictor
based on Top-k metrics in terms of statistical methods. Finally, we attempted to minimize the Top-k met-
ric subset by removing redundant metrics, and we tested the stability of such a minimum metric subset
with one-way ANOVA tests.
Results: The study has been conducted on 34 releases of 10 open-source projects available at the PROM-
ISE repository. The findings indicate that the predictors built with either Top-k metrics or the minimum
metric subset can provide an acceptable result compared with benchmark predictors. The guideline for
choosing a suitable simplified metric set in different scenarios is presented in Table 12.
Conclusion: The experimental results indicate that (1) the choice of training data for defect prediction
should depend on the specific requirement of accuracy; (2) the predictor built with a simplified metric
set works well and is very useful in case limited resources are supplied; (3) simple classifiers (e.g., Naïve
Bayes) also tend to perform well when using a simplified metric set for defect prediction; and (4) in sev-
eral cases, the minimum metric subset can be identified to facilitate the procedure of general defect pre-
diction with acceptable loss of prediction precision in practice.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In software engineering, defect prediction can precisely esti-
mate the most defect-prone software components, and help soft-
ware engineers allocate limited resources to those bits of the
systems that are most likely to contain defects in testing and main-
tenance phases. Understanding and building defect predictors (also
known as defect prediction models) for a software project is useful

for a variety of software development or maintenance activities,
such as assessing software quality and monitoring quality assur-
ance (QA).

The importance of defect prediction has motivated numerous
researchers to define different types of models or predictors that
characterize various aspects of software quality. Most studies usu-
ally formulate such a problem as a supervised learning problem,
and the outcomes of those defect prediction models depend on his-
torical data. That is, they trained predictors from the data of histor-
ical releases in the same project and predicted defects in the
upcoming releases, or reported the results of cross-validation on
the same data set [16], which is referred to as Within-Project
Defect Prediction (WPDP). Zimmermann et al. [3] stated that defect

http://dx.doi.org/10.1016/j.infsof.2014.11.006
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: School of Computer, Wuhan University, Wuhan
430072, China. Tel.: +86 27 68776081.

E-mail addresses: penghe@whu.edu.cn (P. He), bingli@whu.edu.cn (B. Li),
lxiao@whu.edu.cn (X. Liu), chenj@whu.edu.cn (J. Chen), ytma@whu.edu.cn (Y. Ma).

Information and Software Technology 59 (2015) 170–190

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.11.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.11.006
mailto:penghe@whu.edu.cn
mailto:bingli@whu.edu.cn
mailto:lxiao@whu.edu.cn
mailto:chenj@whu.edu.cn
mailto:ytma@whu.edu.cn
http://dx.doi.org/10.1016/j.infsof.2014.11.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


prediction performs well within projects as long as there is a suffi-
cient amount of data available to train any models. However, it is
not practical for new projects to collect such sufficient historical
data. Thus, achieving high accuracy defect prediction based on
within-project data is impossible in some cases.

Conversely, there are many public on-line defect data sets avail-
able, such as PROMISE,1 Apache2 and Eclipse.3 Some researchers
have been inspired to overcome this challenge by applying the pre-
dictors built for one project to a different one [3,17,65]. Utilizing data
across projects to build defect prediction models is commonly
referred to as Cross-Project Defect Prediction (CPDP). CPDP refers
to predicting defects in a project using prediction models trained
from the historical data of other projects. The selection of training
data depends on the distributional characteristics of data sets. Some
empirical studies evaluated the potential usefulness of cross-project
predictors with a number of software metrics (e.g., static code met-
rics, process metrics, and network metrics) [15,16] and how these
metrics could be used in a complementary manner [8]. Unfortu-
nately, despite these attempts to demonstrate the feasibility of CPDP,
this method has been widely challenged because of its low perfor-
mance in practice [15]. Moreover, it is still unclear how defect pre-
diction models between WPDP and CPDP are rationally chosen
when limited or insufficient historical data are provided.

In defect prediction literature, a considerable number of soft-
ware metrics, such as static code metrics, code change history, pro-
cess metrics and network metrics [1,4–7,10], have been used to
construct different predictors for defect prediction [35]. Almost
all existing prediction models are built on the complex combina-
tions of software metrics, with which a prediction model usually
can achieve a satisfactory accuracy. Although some feature
selection techniques (e.g., principal component analysis (PCA))
successfully reduce data dimensions [2,44–46,50], they still lead
to a time-consuming prediction process. Can we find a compromise
solution that makes a tradeoff between cost and accuracy? In other
words, can we find a universal predictor built with few metrics
(e.g., Lines Of Code (LOC)) that achieves an acceptable result
compared with those complex prediction models?

In addition to the selection of a wide variety of software met-
rics, there are many classifiers (learning algorithms) that have been
studied, such as Naïve Bayes, J48, Support Vector Machine (SVM),
Logistic Regression, and Random Tree [24,27,29], and defect pre-
diction using these typical classifiers has achieved many useful
conclusions. Currently, some improved classifiers [26,54,65] and
hybrid classifiers [30–32] have also been proposed to effectively
improve classification results. Menzies et al. [33] advocated that
different classifiers have indiscriminate usage and must be chosen
and customized for the goal at hand.

Fig. 1 presents a summary of the state-of-the-art defect predic-
tion. Complex predictors improve prediction precision with loss of
generality and increase the cost of data acquisition and processing.
On the contrary, simple predictors are more universal, and they
reduce the total effort-and-cost by sacrificing a little precision.
To construct an appropriate and practical prediction model, we
should take into overall consideration the precision, generality
and cost according to specific requirements. Unlike the existing
studies on complex predictors, in our study, we focus mainly on
building simple prediction models with a simplified metric set
according to two assumptions (see the contents with a gray back-
ground in Fig. 1), and seek empirical evidence that they can achieve
acceptable results compared with the benchmark models. Our con-
tributions to the current state of research are summarized as
follows:

� We proposed an easy-to-use approach to simplifying the
set of software metrics based on filters methods for feature
selection, which could help software engineers build suit-
able prediction models with the most representative code
features according to their specific requirements.

� We also validated the optimistic performance of the predic-
tion model built with a simplified subset of metrics in dif-
ferent scenarios, and found that it was competent enough
when using different classifiers and training data sets from
an overall perspective.

� We further demonstrated that the prediction model con-
structed with the minimum subset of metrics can achieve
a respectable overall result. Interestingly, such a minimum
metric subset is stable and independent of the classifiers
under discussion.

With these contributions, we complement previous work on
defect prediction. In particular, we provide a more comprehensive
suggestion on the selection of appropriate predictive modeling
approaches, training data, and simplified metric sets for construct-
ing a defect predictor according to different specific requirements.

The rest of this paper is organized as follows. Section 2 is a
review of related literature. Sections 3 and 4 describe the approach
of our empirical study and the detailed experimental setups,
respectively. Sections 5 and 6 analyze and discuss the primary
results, and some threats to validity that could affect our study
are presented in Section 7. Finally, Section 8 concludes the paper
and presents the agenda for future work.

2. Related work

Defect prediction is an important topic in software engineering,
which allows software engineers to pay more attention to defect-
prone code with software metrics, thereby improving software
quality and making better use of limited resources.

2.1. Within-project defect prediction

Catal [28] investigated 90 software defect prediction papers
published between 1990 and 2009. He categorized these papers
and reviewed each paper from the perspectives of metrics, learning
algorithms, data sets, performance evaluation metrics, and experi-
mental results in an easy and effective manner. According to this
survey, the author stated that most of the studies using method-
level metrics and prediction models were mostly based on
machine learning techniques, and Naïve Bayes was validated as a
robust machine learning algorithm for supervised software defect
prediction problems.

Hall et al. [22] investigated how the context of models, the inde-
pendent variables used, and the modeling techniques applied
affected the performance of defect prediction models according
to 208 defect prediction studies. Their results showed that simple
modeling techniques, such as Naïve Bayes or Logistic Regression,
tended to perform well. In addition, the combinations of indepen-
dent variables were used by those prediction models that per-
formed well, and the results were particularly good when feature
selection had been applied to these combinations. The authors
argued that there were a lot of defect prediction studies in which
confidence was possible, but more studies that used a reliable
methodology and that reported their detailed context, methodol-
ogy, and performance in the round were needed.

The vast majority of these studies were investigated in the above
two systematic literature reviews that were conducted in the con-
text of WPDP. However, they ignored the fact that some projects,
especially new projects, usually have limited or insufficient

1 http://promisedata.org.
2 http://www.apache.org/.
3 http://eclipse.org.

P. He et al. / Information and Software Technology 59 (2015) 170–190 171

http://promisedata.org
http://www.apache.org/
http://eclipse.org


Download	English	Version:

https://daneshyari.com/en/article/550141

Download	Persian	Version:

https://daneshyari.com/article/550141

Daneshyari.com

https://daneshyari.com/en/article/550141
https://daneshyari.com/article/550141
https://daneshyari.com/

