
A framework for software process deployment and evaluation

Iván Ruiz-Rube a,⇑, Juan Manuel Dodero a, Ricardo Colomo-Palacios b

a Superior School of Engineering, Avenida de la Universidad, 10, 11519 Puerto Real, Cádiz, Spain
b Østfold University College, B R A Veien 4, 1783 Halden, Norway

a r t i c l e i n f o

Article history:
Received 23 July 2014
Received in revised form 28 November 2014
Accepted 2 December 2014
Available online 15 December 2014

Keywords:
Software quality
Software Process Engineering
Model-driven engineering
Information integration
Linked open data

a b s t r a c t

Context: Software Process Engineering promotes the systematic production of software by following a set
of well-defined technical and management processes. A comprehensive management of these processes
involves the accomplishment of a number of activities such as model design, verification, validation,
deployment and evaluation. However, the deployment and evaluation activities need more research
efforts in order to achieve greater automation.
Objective: With the aim of minimizing the required time to adapt the tools at the beginning of each new
project and reducing the complexity of the construction of mechanisms for automated evaluation, the
Software Process Deployment & Evaluation Framework (SPDEF) has been elaborated and is described
in this paper.
Method: The proposed framework is based on the application of well-known techniques in Software
Engineering, such as Model Driven Engineering and Information Integration through Linked Open Data.
It comprises a systematic method for the deployment and evaluation, a number of models and
relationships between models, and some software tools.
Results: Automated deployment of the OpenUP methodology is tested through the application of the
SPDEF framework and support tools to enable the automated quality assessment of software
development or maintenance projects.
Conclusions: Making use of the method and the software components developed in the context of the
proposed framework, the alignment between the definition of the processes and the supporting tools
is improved, while the existing complexity is reduced when it comes to automating the quality
evaluation of software processes.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Software Process Engineering is the area of software engineer-
ing that promotes the systematic production of software by follow-
ing a series of well-defined technical and management processes,
in order to maximize their quality [1]. Thus, organizations need
to have methods, techniques and tools to implement a comprehen-
sive strategy of continual quality improvement of their software
development and maintenance processes. A comprehensive
software processes management requires tools for designing, veri-
fying, validating, deploying and evaluating processes. However, the
supporting tools often do not provide mechanisms to include
explicit definitions of the processes, which causes a significant lack
of consistency between process models and the actual deployment
of the tools.

Moreover, experimentation in Software Engineering is a rela-
tively new discipline, which aims to find quantitative answers to
specific questions [2]. In order to pose formal experiments, evi-
dence about the procedures, tools and resources used to perform
the software life cycle activities is needed. From the data and the
evidence generated in different software tools for supporting the
software process, the strengths and weaknesses of the elements
involved in the software life cycle can be analyzed. However,
designing and constructing automatic evaluation methods of such
elements is a highly complex task.

This paper presents a framework for the deployment and eval-
uation of software processes. Software process deployment refers
to the implementation of the definitions of the processes on the
operational environment. The deployment of processes covers
from organizational aspects, such as the implementation of proce-
dures and the acceptance of commitments; technological aspects,
such as the configuration and adaptation of tools; and social
aspects, such as teamwork and training, among others [3]. In this
paper, we will focus on producing structures for maintaining

http://dx.doi.org/10.1016/j.infsof.2014.12.001
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +34 956 483 485; fax: +34 956 015 139.
E-mail addresses: ivan.ruiz@uca.es (I. Ruiz-Rube), juanma.dodero@uca.es

(J.M. Dodero), ricardo.colomo-palacios@hiof.no (R. Colomo-Palacios).

Information and Software Technology 59 (2015) 205–221

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.12.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.12.001
mailto:ivan.ruiz@uca.es
mailto:juanma.dodero@uca.es
mailto:ricardo.colomo-palacios@hiof.no
http://dx.doi.org/10.1016/j.infsof.2014.12.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


software documentation and models on supporting tools, such as
UML modeling and wiki tools, as well as, for planning software
projects on issue-tracking tools.

The evaluation of software processes refers to the set of activi-
ties needed for measuring the quality of the processes and their
suitability to the execution environment after be deployed. Evalu-
ation is also a broad issue because it involves the evaluation of the
activities developed during the execution of the projects, people,
tools, etc. This framework enables the conduction of technical
reviews on software projects for automatically checking the
adherence of the projects to the process descriptions, standards,
and procedures defined.

The foundations of this framework lie in the following research
hypothesis: (RH1) inconsistencies between process definitions and
execution of the projects could be minimized, in part, by custom-
izing and adapting the support tools and by creating specific
templates for them; and (RH2) achieving a global and complete
view of the information managed by the support tools would
enable automating the quality evaluation in software processes.

This framework is based on the application of two well-known
approaches in Software Engineering. First, Model-Driven Engineer-
ing (MDE) techniques for automating the deployment of process
definitions into support tools, and second, Linked Open Data
(LOD) for developing information integration solutions intended
for evaluating software processes, using the data managed in those
tools. Both techniques have proved to provide significant benefits
to the community of software engineering. MDE focuses on the
design and transformation of models for improving productivity
in software development, whereas LOD simplifies the design of
the data integration processes required for publishing and
consuming data on the Web.

The rest of this paper is organized as follows: Section 2 focuses
on different aspects of the systematic management of software
process, and the problems that arise in the elaboration of the pro-
posed framework. In Section 3, the elements that are part of the
framework are presented, whereas Section 4 describes how its
assessment has been carried out. Other research related to our
proposal is described in Section 5. Finally, some conclusions and
outlines of future research are collected in Section 6.

2. The business context of software process management

A business process is defined as a set of activities that are
performed in coordinating an organizational and technical environ-
ment to achieve a given business objective [4]. Business Process
Management (BPM) follow a cycle of continual improvement, start-
ing with its design using some standard modeling language (e.g.
BPMN), its verification and validation, its configuration, the enact-
ment of models for its execution in a BPM engine, and its evalua-
tion. Software processes, which are a particular type of business
process, consist of a coherent set of policies, organizational struc-
tures, technologies, procedures, and the artifacts needed for design-
ing, developing, installing and maintaining a software product [5].

The explicit definition of processes plays a key role in the major
initiatives for software process improvement. For example, process
modeling is included in the Organizational Process Definition pro-
cess area of Capability Maturity Model Integration (CMMI) [6],
whereas in ISO/IEC 12207, it is included in the Process Improvement
group [7]. Modeling languages enable building process
descriptions in an homogeneous way, usually by using a graphical
notation. These languages help improve the appropriate under-
standing of the processes by all stakeholders. Software Process
Modeling Language (SPML) share common elements, such as
activities, resources, work products, actors and rules.

The Object Management Group (OMG) consortium published in
2002 the Software and Systems Process Engineering Metamodel

Specification (SPEM), a language designed for modeling software
engineering processes. It is definitely the software process defini-
tion language most commonly used [8]. The potential benefits of
this language seem quite promising, such as reusing methods and
processes across organizations, and laying the foundations for the
automation of processes, among others [9]. However, this language
has not achieved a sufficient level of acceptance in the industry, but
they are only used in academic and research fields [10,11].

Unlike business processes management, controlled by the BPM
systems, there are no complete suites for the definition, configura-
tion, implementation and evaluation of software processes. How-
ever, in recent years, thanks in part to the rise of the open source
movement, numerous support tools for software management
and production [12] are appearing. Along with the development
of these types of tools, various platforms to promote and foster
cooperation between work team members in software projects
and to provide support to end users have also emerged. These plat-
forms, called software forges, are evolving towards the concept of a
Application Life cycle Management (ALM) platform. The latter are
designed to integrate and coordinate a number of engineering
and management software tools, with the aim of covering all or
most of the activities of the software life cycle.

Such support tools require, at the beginning of each new project,
considerable efforts for their adaption to the specific requirements
of the project and the corporate methodology. In addition, due to
the slow acceptance of the SPML, the support tools, forges or ALM
platforms do not often incorporate capabilities for linking with
the explicit definitions or models of the processes, which causes a
significant lack of consistency between the process definition and
the further execution of the projects. Also, the absence of mecha-
nisms for automation makes the modeling software process, for
instance with the SPEM language, unable to offer a sufficient return
on investment to be considered interesting to most companies.

In the continuous quality improvement cycle, the evaluation of
processes is essential. Therefore, in order to be able to apply
improvement mechanisms, it is necessary to measure and analyze
the errors, deficiencies or deviations in the actual process execu-
tion. Establishing an automated measurement plan by using BPM
systems is usually a relatively simple task, typically using real-time
metric monitoring tools and post-mortem analysis engines,
although almost real time approaches are gaining momentum
[13]. In contrast, in the software engineering processes, collecting
data from real projects is a complex activity because the ALM inte-
grated platforms are not wide spread and the software process-
aware support tools are in their early stages.

In addition to the analysis of metrics and indicators, technical
reviews are another important set of control activities in Software
Engineering. These activities are usually quite repetitive and
require a significant allocation of human resources, as they are
often manual activities. Reviews are usually completed at certain
checkpoints throughout the software life cycle, such as at the
end of certain phases, milestones, activities, or iterations (in incre-
mental life cycles) or just before delivery to the client [14].

Despite the fact that the analysis of metrics and software revi-
sions are essential activities to improve software quality, it is com-
mon that organizations cannot allocate sufficient effort and human
resources to make this work. Therefore, research on novel mecha-
nisms to automate technical reviews is needed.

Software management or production support tools host a large
amount of information that can be used for the purpose of evaluat-
ing software processes. However, data analysis from projects
deployed into software process support systems is still an emerg-
ing area in Software Engineering. One of the major problems of
the integration of the information generated during the projects
is the discrepancy with respect to the data models used in the dif-
ferent tools. Therefore, publishing data with a shared information

206 I. Ruiz-Rube et al. / Information and Software Technology 59 (2015) 205–221



Download English Version:

https://daneshyari.com/en/article/550143

Download Persian Version:

https://daneshyari.com/article/550143

Daneshyari.com

https://daneshyari.com/en/article/550143
https://daneshyari.com/article/550143
https://daneshyari.com

