Author's Accepted Manuscript

PARADOXICAL ROLES OF DUAL OXIDASES IN CANCER BIOLOGY

Andrew C. Little, Arvis Sulovari, Karamatullah Danyal, David E. Heppner, David J. Seward, Albert van der Vliet

PII:	S0891-5849(17)30609-3
DOI:	http://dx.doi.org/10.1016/j.freeradbiomed.2017.05.024
Reference:	FRB13351

Reference: FRB13351
To appear in: Free Radical Biology and Medicine
Received date: 15 March 2017
Revised date: 26 May 2017
Accepted date: 30 May 2017
Cite this article as: Andrew C. Little, Arvis Sulovari, Karamatullah Danyal David E. Heppner, David J. Seward and Albert van der Vliet, PARADOXICAL ROLES OF DUAL OXIDASES IN CANCER BIOLOGY, Free Radica Biology and Medicine, http://dx.doi.org/10.1016/j.freeradbiomed.2017.05.024

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, ans review of the resulting galley proof before it is published in its final citable forr Please note that during the production process errors may be discovered whic could affect the content, and all legal disclaimers that apply to the journal pertain

PARADOXICAL ROLES OF DUAL OXIDASES IN CANCER BIOLOGY

Andrew C. Little ${ }^{1}$, Arvis Sulovari ${ }^{2}$, Karamatullah Danyal ${ }^{1}$, David E. Heppner ${ }^{1}$, David J. Seward ${ }^{1}$, Albert van der Vliet ${ }^{* *}$
Departments of ${ }^{1}$ Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405
${ }^{2}$ Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405
*Corresponding author: Department of Pathology and Laboratory Medicine, Robert Larner M.D., College of Medicine, University of Vermont, HSRF Building, Room 216149 Beaumont Avenue, Burlington, VT 05405. Tel.: (802) 656-8638; Fax: (802) 656-8892. albert.van-der-vliet@uvm.edu

Abstract

Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of

https://daneshyari.com/en/article/5501720

Download Persian Version:
https://daneshyari.com/article/5501720

Daneshyari.com

