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ARTICLE INFO ABSTRACT

Keywords: MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling
Monocyte molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK
DUsP phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and
Macrophage macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to
Redox signaling . . . . . . . .

MAPK dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-
Atherosclerosis derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase

and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases.

1. Introduction

The mitogen-activated protein kinase (MAPK) signaling pathways
are evolutionally highly conserved [1] and involved in diverse cellular
functions, including cell proliferation, differentiation and stress re-
sponses. A wide variety of extracellular stimuli induce phosphorylation
and activation of MAPKs [2,3]. For immune cells, these stimuli
commonly include cytokines, chemoattractants, reactive oxygen spe-
cies, antigen—-antibody complexes, and pathogen-associated molecules
that engage toll-like receptors. MAPKs are serine/threonine kinase
activated via phosphorylation of both the threonine and tyrosine
residues within the conserved TXY sequence. The three main arms of
the MAPK pathway cascade are ERK (extracellular signal-regulated
kinase), JNK (c-Jun N-terminal kinase) and p38. They mediate immune
cell functional responses to a wide array of stimuli [4,5]. Activated
MAPKs are inactivated through dephosphorylation of threonine and/or
tyrosine residues within the activation loop [6]. MAPK dephosphoryla-
tion can be mediated by serine/threonine phosphatases, tyrosine
phosphatases, and/or dual-specificity phosphatases (DUSP) [7]. How-

ever, by far the largest group of protein phosphatases dedicated to the
specific regulation of MAPK activity in mammalian cells and tissues are
the dual-specificity MAPK phosphatases (MKPs). These phosphatases
dephosphorylate both threonine and tyrosine residues within the
substrates they target [8].

MAPK pathways play a critical role in the activation of monocytes
and macrophages by pathogens, signaling molecules and environmental
cues [9-11]. Human and murine monocytes and macrophages express
six MKPs (MKP-1, MKP-2, MKP-3, MKP-5, MKP-6 and MKP-7), although
MKP-6 has only been reported in murine macrophages [12-20].
However, our understanding of the specific roles of these MKPs in
monocyte and macrophages is still very limited. Recent evidence from
our group and others suggests that MKP-1 is a central regulator of
monocyte and macrophage activation, function and phenotypic fate,
and loss of MKP-1 activity in these cells may play an important role in
dysregulated inflammatory responses and the onset and development of
metabolic and chronic inflammatory diseases, including atherosclerosis
[21-25]. The focus of this review will therefore be on MKP-1 and its
role in monocyte and macrophage biology in the context of cardiovas-
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Fig. 1. Calculated 3D Structure of MKP-1 (residues 172-314). The position of the catalytic residue Cys258 is indicated. This figure was adopted from ModBase. (https://modbase.

compbio.ucsf.edu, Database ID: P28562).

cular disease.

2. MKP-1 - structure, functions and regulation
2.1. Structure

Although a three dimensional (3D) structure of MKP-1 has not been
reported so far, its structure can be predicted with homology modeling
using the X-ray crystal structure of MKP-2 (PDB code: 3EZZ) [26] as the
template since the sequence identity between the two MKPs is 86%
[27], and they have the same amino acid sequence (C-Q-A-G-I-S) in
the PTP loop (residues 258-264 for MKP-1), the key component of the
active site. The predicted 3D structure for MKP-1 (residues 172-314)
based on calculations with ModPipe (https://salilab.org/modpipe/) is
shown in Fig. 1.

2.2. Transcriptional regulation

MKP-1 expression and activity can be regulated at several levels,
including gene transcription, protein stability, and phosphatase activ-
ity. This multi-level regulation allows for tight control of MAPKSs’
activities. MKP-1, the first MKP discovered, was identified as an
immediate early gene that is induced rapidly after exposure to growth
factors, heat shock and oxidative stress [28-30]. As MKP-1 functions to
deactivate MAPKs, it was proposed that MAPKs may activate MKP-1
transcription, as part of a negative feedback mechanism [31,32].
Indeed, in vascular smooth muscle cells, platelet-derived growth factor
(PDGF), phorbol ester, and angiotensin II, which activate ERK, but not
JNK or p38, and anisomycin, a potent stimulus for JNK and p38, all
induced the transient expression of MKP-1 [33]. In C3H 10T1/2 murine
fibroblasts, MKP-1 induction by heat shock and H,O, is primarily
dependent on ERK, whereas MKP-1 induction by arsenite and UVC is
primarily mediated by p38 [34]. However, in NIH 3T3 fibroblasts,
MKP-1 is highly induced by stress through a JNK-mediated process,
while ERK has little effect on MKP-1 induction. MKP-1 induction in
macrophages by LPS involves all three MAPK subfamilies [35-38]. In
addition to the MAPK pathways, members of the protein kinase C (PKC)
family have also been shown to regulate MKP-1 induction in a number
of systems. In cardiomyocytes treated with angiotensin II, PKC inhibi-
tors or intracellular calcium chelation decrease MKP-1 expression while
calcium ionophores increase MKP-1 mRNA levels [39]. PKCe plays a
critical role in MKP-1 induction in macrophages [40,41]. While it is
possible that the PKC pathways cross-talk with the MAPK cascades to
regulate MKP-1 induction, MAPK-independent pathways may also be
involved.

2.3. Epigenetic regulation

Epigenetic mechanism has been also suggested to modulate MKP-1
expression. The mRNA expression levels of MKP-1 gene are down-
regulated in both prostate cancer and breast cancer, and this down-
regulation appears to involve DNA methylation [42,43]. In addition,
phosphorylation and acetylation of histone H3 alters the chromatin at
the MKP-1 gene locus, increasing the association of RNA polymerase II
to the MKP-1 gene promoter and promoting MKP-1 transcription [34].

2.4. Post-transcriptional regulation

Because of the short half-life of MKP-1 mRNA (1-2 h) [44], it was
generally assumed that MKP-1 expression is primarily transcriptionally
regulated. This variation in half-life may stem from the different
mechanisms that determine the amount of MKP-1 mRNA that accumu-
lates. Tristetraprolin (TTP), a zinc-finger-containing AU-rich elements
(ARE)-binding protein, binds to and destabilizes MKP —1 mRNA [45].
Recently, other post-transcriptional regulatory mechanisms have been
shown to regulate MKP-1 levels. RNA-binding proteins HuR (also
known as ELAV1) [45,46], and NF90 [47] were found to associate
with the MKP-1 3’ untranslated region. HuR both stabilizes the MKP-1
mRNA and promotes its translation [48,49]. While NF90 also stabilizes
the MKP-1 mRNA, binding of NF90 appears to suppress MKP-1
translation [48].

2.5. Post-translational regulation

A number of post-translational modifications have been identified
that modulate MKP-1 activity and stability. The binding of ERK, JNK, or
p38 to recombinant MKP-1 increases the activity of the phosphatase
[50,51]. This increase in activity is induced by the interaction between
domains in the amino terminus of the phosphatase and an acidic
domain at the carboxyl terminus of the kinases. ERK-mediated phos-
phorylation of the C-terminal residues Ser359 and Ser364 in MKP-1
increases protein stability, thereby reinforcing phosphatase activity and
establishing autoregulatory negative feedback control [52] (Fig. 2). By
contrast, ERK-mediated phosphorylation of the distinct residues Ser296
and Ser323 within MKP-1 results in the recruitment of the ubiquitin
ligase SCFskp2, and increases the rate at which MKP-1 is degraded
[53,54]. In addition, MKP-1 is acetylated by p300 on lysine residue
(Lys57) within its substrate-binding domain. Acetylation of MKP-1
enhances its interaction with p38, thereby increasing its phosphatase
activity and interrupting MAPK signaling [55]. Interestingly, Lys57 is
located in close proximity of MKP-1's nuclear localization sequence
(NLS: aa 53-55; Fig. 2), but whether acetylation of MKP-1 affects its
cellular localization is not known. Little is known about the enzymes
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