
Testing scientific software: A systematic literature review

Upulee Kanewala ⇑, James M. Bieman
Computer Science Department, Colorado State University, USA

a r t i c l e i n f o

Article history:
Received 14 October 2013
Received in revised form 12 May 2014
Accepted 14 May 2014
Available online 23 May 2014

Keywords:
Scientific software
Software testing
Systematic literature review
Software quality

a b s t r a c t

Context: Scientific software plays an important role in critical decision making, for example making
weather predictions based on climate models, and computation of evidence for research publications.
Recently, scientists have had to retract publications due to errors caused by software faults. Systematic
testing can identify such faults in code.
Objective: This study aims to identify specific challenges, proposed solutions, and unsolved problems
faced when testing scientific software.
Method: We conducted a systematic literature survey to identify and analyze relevant literature. We
identified 62 studies that provided relevant information about testing scientific software.
Results: We found that challenges faced when testing scientific software fall into two main categories: (1)
testing challenges that occur due to characteristics of scientific software such as oracle problems and (2)
testing challenges that occur due to cultural differences between scientists and the software engineering
community such as viewing the code and the model that it implements as inseparable entities. In
addition, we identified methods to potentially overcome these challenges and their limitations. Finally
we describe unsolved challenges and how software engineering researchers and practitioners can help
to overcome them.
Conclusions: Scientific software presents special challenges for testing. Specifically, cultural differences
between scientist developers and software engineers, along with the characteristics of the scientific soft-
ware make testing more difficult. Existing techniques such as code clone detection can help to improve
the testing process. Software engineers should consider special challenges posed by scientific software
such as oracle problems when developing testing techniques.

� 2014 Elsevier B.V. All rights reserved.

Contents

1. Introduction . 1220
2. Research method . 1220

2.1. Planning the SLR . 1221
2.1.1. Research questions . 1221
2.1.2. Formulation and validation of the review protocol . 1221

2.2. Conducting the review . 1221
2.2.1. Identifying relevant studies and primary studies . 1221
2.2.2. Data extraction and quality assessment . 1222

2.3. Reporting the review. 1222
3. Results. 1222

3.1. RQ1: How is scientific software defined in the literature?. 1222
3.2. RQ2: Are there special characteristics or faults in scientific software or its development that make testing difficult?. 1224
3.3. RQ3: Can we use existing testing methods (or adapt them) to test scientific software effectively? . 1226
3.4. RQ4: Are there any challenges that could not be answered by existing techniques?. 1229

4. Discussion. 1229

http://dx.doi.org/10.1016/j.infsof.2014.05.006
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 9704917096.
E-mail addresses: upuleegk@cs.colostate.edu (U. Kanewala),

bieman@cs.colostate.edu (J.M. Bieman).

Information and Software Technology 56 (2014) 1219–1232

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.05.006&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.05.006
mailto:upuleegk@cs.colostate.edu
mailto:bieman@cs. colostate.edu
http://dx.doi.org/10.1016/j.infsof.2014.05.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

4.1. Principal findings. 1229
4.2. Techniques potentially useful in scientific software testing. 1229
4.3. Strengths and weaknesses of the SLR . 1230
4.4. Contribution to research and practice community . 1230

5. Conclusion and future work . 1230
Acknowledgments . 1231
References . 1231

1. Introduction

Scientific software is widely used in science and engineering
fields. Such software plays an important role in critical decision
making in fields such as the nuclear industry, medicine and the
military [65,66]. For example, in nuclear weapons simulations,
code is used to determine the impact of modifications, since these
weapons cannot be field tested [62]. Climate models make climate
predictions and assess climate change [17]. In addition, results
from scientific software are used as evidence in research publica-
tions [66]. Due to the complexity of scientific software and the
required specialized domain knowledge, scientists often develop
these programs themselves or are closely involved with the devel-
opment [60,47,69,7]. But scientist developers may not be familiar
with accepted software engineering practices [69,65]. This lack of
familiarity can impact the quality of scientific software [20].

Software testing is one activity that is impacted. Due to the lack
of systematic testing of scientific software, subtle faults can remain
undetected. These subtle faults can cause program output to
change without causing the program to crash. Software faults such
as one-off errors have caused the loss of precision in seismic data
processing programs [27]. Software faults have compromised coor-
dinate measuring machine (CMM) performance [1]. In addition,
scientists have been forced to retract published work due to soft-
ware faults [51]. Hatton et al. found that several software systems
written for geoscientists produced reasonable yet essentially dif-
ferent results [28]. There are reports of scientists who believed that
they needed to modify the physics model or develop new algo-
rithms, but later discovered that the real problems were small
faults in the code [18].

We define scientific software broadly as software used for scien-
tific purposes. Scientific software is mainly developed to better
understand or make predictions about real world processes. The
size of this software ranges from 1,000 to 100,000 lines of code
[66]. Developers of scientific software range from scientists who
do not possess any software engineering knowledge to experi-
enced professional software developers with considerable software
engineering knowledge.

To develop scientific software, scientists first develop discret-
ized models. These discretized models are then translated into
algorithms that are then coded using a programming language.
Faults can be introduced during all of these phases [15]. Developers
of scientific software usually perform validation to ensure that the
scientific model is correctly modeling the physical phenomena of
interest [37,57]. They perform verification to ensure that the com-
putational model is working correctly [37], using primarily math-
ematical analyses [62]. But scientific software developers rarely
perform systematic testing to identify faults in the code
[38,57,32,65]. Farrell et al. show the importance of performing
code verification to identify differences between the code and
the discretized model [24]. Kane et al. found that automated test-
ing is fairly uncommon in biomedical software development [33].
In addition, Reupke et al. discovered that many of the problems
found in operational medical systems are due to inadequate testing
[64]. Sometimes this lack of systematic testing is caused by special
testing challenges posed by this software [20].

This work reports on a Systematic Literature Review (SLR) that
identifies the special challenges posed by scientific software and
proposes solutions to overcome these challenges. In addition, we
identify unsolved problems related to testing scientific software.

An SLR is a ‘‘means of evaluating and interpreting all available
research relevant to a particular research question or topic area
or phenomenon of interest’’ [41]. The goal of performing an SLR
is to methodically review and gather research results for a specific
research question and aid in developing evidence-based guidelines
for the practitioners [42]. Due to the systematic approach followed
when performing an SLR, the researcher can be confident that she
has located the required information as much as possible.

Software engineering researchers have conducted SLRs in a
variety of software engineering areas. Walia et al. [77] conducted
an SLR to identify and classify software requirement errors. Eng-
ström et al. [23] conducted an SLR on empirical evaluations of
regression test selection techniques with the goal of ‘‘finding a
basis for further research in a joint industry-academia research
project’’. Afzal et al. [3] carried out an SLR on applying search-
based testing for performing non-functional testing. Their goal is
to ‘‘examine existing work into non-functional search-based soft-
ware testing’’. While these SLRs are not restricted to software in
a specific domain, we focus on scientific software, an area that
has received less attention than application software. Further
when compared to Engström et al. or Afzal et al., we do not restrict
our SLR to a specific testing technique.

The overall goal [42] of our SLR is to identify specific challenges
faced when testing scientific software, how the challenges have been
met, and any unsolved challenges. We developed a set of research
questions based on this overall goal to guide the SLR process. Then
we performed an extensive search to identify publications that can
help to answer these research questions. Finally, we synthesized
the gathered information from the selected studies to provide
answers to our research questions.

This SLR identifies two categories of challenges in scientific soft-
ware testing. The first category are challenges that are due to the
characteristics of the software itself such as the lack of an oracle.
The second category are challenges that occur because scientific
software is developed by scientists and/or scientists play leading
roles in scientific software development projects, unlike applica-
tion software development where software engineers play leading
roles. We identify techniques used to test scientific software
including techniques that can help to overcome oracle problems
and test case creation/selection challenges. In addition, we
describe the limitations of these techniques and open problems.

This paper is organized as follows: Section 2 describes the SLR
process and how we apply it to find answer to our research ques-
tions. We report the findings of the SLR in Section 3. Section 4 con-
tains the discussion on the findings. Finally we provide conclusions
and describe future work in Section 5.

2. Research method

We conducted our SLR following the published guidelines by
Kitchenham [41]. The activities performed during an SLR can be

1220 U. Kanewala, J.M. Bieman / Information and Software Technology 56 (2014) 1219–1232

Download	English	Version:

https://daneshyari.com/en/article/550197

Download	Persian	Version:

https://daneshyari.com/article/550197

Daneshyari.com

https://daneshyari.com/en/article/550197
https://daneshyari.com/article/550197
https://daneshyari.com/

