
The effect of governance on global software development: An empirical
research in transactive memory systems

Christina Manteli ⇑, Bart van den Hooff, Hans van Vliet
VU University, de Boelelaan, 1081 Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 10 October 2013
Received in revised form 10 April 2014
Accepted 10 April 2014
Available online 19 April 2014

Keywords:
Global software development
Distributed teams
Software governance
Transactive memory systems
Social network analysis

a b s t r a c t

Context: The way global software development (GSD) activities are managed impacts knowledge trans-
actions between team members. The first is captured in governance decisions, and the latter in a trans-
active memory system (TMS), a shared cognitive system for encoding, storing and retrieving knowledge
between members of a group.
Objective: We seek to identify how different governance decisions (such as business strategy, team con-
figuration, task allocation) affect the structure of transactive memory systems as well as the processes
developed within those systems.
Method: We use both a quantitative and a qualitative approach. We collect quantitative data through an
online survey to identify transactive memory systems. We analyze transactive memory structures using
social network analysis techniques and we build a latent variable model to measure transactive memory
processes. We further support and triangulate our results by means of interviews, which also help us
examine the GSD governance modes of the participating projects. We analyze governance modes, as
set of decisions based on three aspects; business strategy, team structure and composition, and task allo-
cation.
Results: Our results suggest that different governance decisions have a different impact on transactive
memory systems. Offshore insourcing as a business strategy, for instance, creates tightly-connected clus-
ters, which in turn leads to better developed transactive memory processes. We also find that within the
composition and structure of GSD teams, there are boundary spanners (formal or informal) who have a
better overview of the network’s activities and become central members within their network. An inter-
esting mapping between task allocation and the composition of the network core suggests that the way
tasks are allocated among distributed teams is an indicator of where expertise resides.
Conclusion: We present an analytical method to examine GSD governance decisions and their effect on
transactive memory systems. Our method can be used from both practitioners and researchers as a
‘‘cause and effect’’ tool for improving collaboration of global software teams.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the years globalization of software development activities
turned into a common practice. Factors such as the coordination
and synchronization of the activities across locations and different
time zones, the communication and the knowledge management
between distributed teams became familiar among scholars and
practitioners. And while research in global software development
(GSD) evolves and new practices emerge [1], Herbsleb [2] notes
that ‘‘there is little reason to expect that these factors will
diminish’’.

The purpose of this paper is not to try to diminish those factors
influencing GSD collaboration, but rather identify them and use
them as a tool for a ‘‘cause and effect’’ analysis. Particularly, we
are interested in investigating how different decisions that compa-
nies take on how to govern their GSD activities, affect knowledge
management processes, and more specifically the development of
transactive memory systems (TMSs). In the following paragraphs,
we elaborate on that purpose.

With the continuous and evolving strategies in global software
development, there is a turn of interest towards the challenges and
the key issues of managing GSD activities [3–5]. As a result, global
software development governance turned into an emerging field of
research, as a subfield of information technology (IT) governance.
The purpose of GSD governance is to identify those aspects that

http://dx.doi.org/10.1016/j.infsof.2014.04.012
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +31 20 59 87 788.
E-mail address: c.manteli@vu.nl (C. Manteli).

Information and Software Technology 56 (2014) 1309–1321

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.04.012&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.04.012
mailto:c.manteli@vu.nl
http://dx.doi.org/10.1016/j.infsof.2014.04.012
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


are necessary for an effective coordination and collaboration
among distributed teams. As Bannerman suggests [6], ‘‘governance
is the infrastructure needed to ensure the satisfaction of direct and
indirect stakeholders’’. For instance, when engaged in global activ-
ities one can decide to create a captive center in a remote location,
or to make a ‘‘client–supplier’’ contract with an external partner.
Managers also need to decide on how to structure their teams,
and how to allocate tasks among geographically dispersed mem-
bers. What parts of the projects will be outsourced to the remote
partners, and which parts will remain in site? What kind of respon-
sibilities will be delegated to the offshore partners and how much
to delegate? These are all questions that frame the governance
structure that a company builds for its global activities.

Furthermore, different working practices, geographic proximity
and/or legal barriers between remote offices, influence the devel-
opment of transactive memory systems (TMSs) [7]. Transactive
memory is the kind of memory that the team members develop
and which helps them identify ‘‘who knows what’’ within the team
[8]. In order for the team members to develop such a memory, they
have to engage into various transactions through which expertise
knowledge is created, shared and stored. As a result, a cognitive
system (transactive memory system) is created, where members
are aware of each others expertise domain and they are able to
access it, update it, share it and facilitate its storage.

Coming back to the main purpose of this study, we pursue the
following research question: How do GSD governance decisions
affect transactive memory systems? We examine four case studies,
in two multi-national companies, and we identify their governance
structure. Based on the different governance decisions that each
case study employs, we report on the differences in the develop-
ment of transactive memory systems. We present those differences
as a ‘‘cause and effect’’ analysis, in order to explain how different
GSD governance modes (a set of governance decisions) affect the
collaboration and communication of the distributed teams.

2. Global software development governance

Research on software development governance is rather recent,
and as Dubinsky et al. note [9] it is also the result of an increased
focus on the human aspects of software development, such as team
work and social collaboration. When the software development
activities are globally distributed, the need for a clearly defined
governance model increases [10]. For instance, the authors in
[11] highlight two ‘‘moments’’ of governance in outsourcing rela-
tionships; the moment of the promissory contract which is the for-
mal outsourcing contract between remote partners, and a second
moment of the psychological contract. The latter involves the
post-contractual relationship management that describes the
social interactions between the partners such as trust, communica-
tion and collaboration aspects.

Several other proposals have been made to define the attributes
of a software governance model for distributed development pro-
jects, and the coordination mechanisms that such a model should
embrace. For instance, Ramasubbu and Balan [12] present a
research model on how to create a governance framework for dis-
tributed software development, focusing on three stages of a pro-
ject lifecycle; planning, execution and reflection. In another
study, Gewald and Helbig [10] suggest a governance framework
for managing outsourcing engagements based on organizational
structures, joint processes and relationship management functions.

In an earlier work [7], we elaborated on global software devel-
opment governance and we proposed a GSD governance model,
based on experiences from an empirical case study. Our research
suggested that several knowledge management challenges emerge
in GSD settings, caused by the decisions companies take on how to

govern their global activities, on a strategic, tactical and opera-
tional level. Building upon the results, we synthesized a multi-site
software governance model, based on three aspects: the business
strategy that binds the mutual relationship of the remote offices,
the structure and composition of the remote teams and the way tasks
are allocated across sites. In the present research, we benefit from
this model, and we use it to analyze the governance structures of
the current case studies.

2.1. Business strategy

Carmel and Tija [13] note that one of the things that companies
should not forget when they operate in a global environment is the
broader strategic goals and their legal implications. Recently, a tax-
onomy was proposed by Smite et al. [14] in order to categorize and
map different GSD startegies. According to that taxonomy, GSD
business strategies are identified based on the location (onshore
or offshore), the legal entity (insource or outsource), and the geo-
graphical distance (Near/Far, Close/Distant). To date, two main
business strategies are commonly found in GSD: offshore outsourc-
ing and offshore insourcing [15]. Offshore outsourcing is when the
client-company works with an external partner in a remote loca-
tion (sometimes referred to as the ‘‘buy’’ decision). Offshore
insourcing occurs when the company builds a captive center in a
remote location, such as remote offices belong to the same legal
entity (also referred to as the ‘‘build’’ decision).

2.2. Team structure and composition

Previous research suggests that team structure and composition
is a critical factor of good performance in software development
[16]. Team size, role descriptions and role distribution are among
those characteristics in distributed teams that can influence team
coordination and communication and therefore team performance
[17,18]. A prominent role in the configuration of GSD team is that
of ‘‘boundary spanners’’ [19]. This role is described in various terms
such as ‘‘brokers’’, ‘‘bridges’’, ‘‘liaisons’’ and ‘‘gatekeepers’’. Bound-
ary spanning is perceived as a good coordination strategy in the
management of distributed collaboration, facilitating team aware-
ness and knowledge management [20]. Boundary spanners are also
important within a network because they cover the structural
holes that might exist between people, or between sub-groups
(clusters). Global software collaboration is, by its nature, a situa-
tion where structural holes may emerge between groups that are
geographically, temporally and cultural distant [19]. Chang and
Ehrlich [21] conclude that ‘‘individuals who are more central can
exert more influence by virtue of being connected with other pow-
erful individuals in the network, and have access to more resources
than less central counterparts’’. Finally, Johri [22] recognized two
types of boundary spanners within organizations; the informal
boundary spanners, i.e. people that emerge as mediators between
locations, and formal boundary spanners, i.e. people designated to
play that role.

2.3. Task allocation

Several criteria exist on how to distribute work across sites,
such as based on the area of expertise, on software architecture
and design, or even based on the development steps from require-
ments elicitation to maintenance [23]. For instance, a common
practice for companies that just started outsourcing to a new
external partner is to delegate in the beginning only small parts
of the development work. This tactic is sometimes referred to also
as ‘‘throwing requirements over the fence’’. As the relationship
between distributed offices matures, the client might decide to
share more responsibilities with the offshore teams, and work

1310 C. Manteli et al. / Information and Software Technology 56 (2014) 1309–1321



Download English Version:

https://daneshyari.com/en/article/550202

Download Persian Version:

https://daneshyari.com/article/550202

Daneshyari.com

https://daneshyari.com/en/article/550202
https://daneshyari.com/article/550202
https://daneshyari.com

