Information and Software Technology 56 (2014) 1322-1344

=

Contents lists available at ScienceDirect INFORMATION

|_____AND |
| ____SOFTWARE __|
TECHNOLOGY

%

journal homepage: www.elsevier.com/locate/infsof m——

Information and Software Technology

Test suite reduction methods that decrease regression testing costs by
identifying irreplaceable tests

@ CrossMark

Chu-Ti Lin ¥, Kai-Wei Tang®, Gregory M. Kapfhammer ¢

2 Department of Computer Science and Information Engineering, National Chiayi University, Chiayi, Taiwan
b Cloud System Software Institute, Institute for Information Industry, Taipei, Taiwan
€ Department of Computer Science, Allegheny College, Meadville, PA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 16 August 2013

Received in revised form 10 April 2014
Accepted 14 April 2014

Available online 2 May 2014

Context: In software development and maintenance, a software system may frequently be updated to
meet rapidly changing user requirements. New test cases will be designed to ensure the correctness of
new or modified functions, thus gradually increasing the test suite’s size. Test suite reduction techniques
aim to decrease the cost of regression testing by removing the redundant test cases from the test suite
and then obtaining a representative set of test cases that still yield a high level of code coverage.
Objective: Most of the existing reduction algorithms focus on decreasing the test suite’s size. Yet, the dif-
ferences in execution costs among test cases are usually significant and it may take a lot of execution time
to run a test suite consisting of a few long-running test cases. This paper presents and empirically eval-
uates cost-aware algorithms that can produce the representative sets with lower execution costs.
Method: We first use a cost-aware test case metric, called Irreplaceability, and its enhanced version,
called Elrreplaceability, to evaluate the possibility that each test case can be replaced by others during
test suite reduction. Furthermore, we construct a cost-aware framework that incorporates the concept
of test irreplaceability into some well-known test suite reduction algorithms.
Results: The effectiveness of the cost-aware framework is evaluated via the subject programs and test
suites collected from the Software-artifact Infrastructure Repository — frequently chosen benchmarks
for experimentally evaluating test suite reduction methods. The empirical results reveal that the pre-
sented algorithms produce representative sets that normally incur a low cost to yield a high level of test
coverage.
Conclusion: The presented techniques indeed enhance the capability of the traditional reduction algo-
rithms to reduce the execution cost of a test suite. Especially for the additional Greedy algorithm, the pre-
sented techniques decrease the costs of the representative sets by 8.10-46.57%.

© 2014 Elsevier B.V. All rights reserved.

Keywords:

Software testing
Regression testing
Test suite reduction
Code coverage

Test irreplaceability

1. Introduction associated program path or to determine the correctness of a

software function. It is difficult for a single test case to satisfy all

The goal of software testing is to execute the software system,
locate the faults that cause failures, and improve the quality of
the software by removing the detected faults. Testing is the pri-
mary method that is widely adopted to ensure the quality of the
software under development [1]. According to the IEEE definition
[2], a test case is a set of input data and expected output results
which are designed to exercise a specific software function or test
requirement. During testing, the testers, or the test harnesses, will
execute the underlying software system to either examine the

* Corresponding author. Tel.: +886 5 2717227.
E-mail address: chutilin@mail.ncyu.edu.tw (C.-T. Lin).

http://dx.doi.org/10.1016/j.infsof.2014.04.013
0950-5849/© 2014 Elsevier B.V. All rights reserved.

of the specified test requirements. Hence, a considerable number
of test cases are usually generated and collected in a test suite [3].

If the requirement set covered by a test case overlaps the set cov-
ered by another test case, then the two test cases may be redundant
to each other. At the beginning of software testing, a large number of
test cases may be automatically generated by a test case generator
without considering the redundancies of test cases [4,5]. Yet,
because the resources allocated to a testing team are usually limited,
it may be impractical to execute all of the generated test cases. If
software developers can reduce the test suite by removing the
redundant test cases, while still ensuring that all test requirements
are satisfied by the reduced test suite, then testing may be more effi-
cient and the effectiveness of testing in unlikely to be compromised.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.04.013&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.04.013
mailto:chutilin@mail.ncyu.edu.tw
http://dx.doi.org/10.1016/j.infsof.2014.04.013
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

C.-T. Lin et al./Information and Software Technology 56 (2014) 1322-1344 1323

The process of removing the redundant test cases is called test suite
reduction or test suite minimization [6,7].

Additionally, evolutionary development, incremental delivery,
and software maintenance are common in software development
[8,9]. In such development processes, the functionality of a soft-
ware system may be refined to meet the customer’s needs or
may be delivered incrementally. Each time the software developers
modify the system, they may also introduce some faults. New test
cases should be added to ensure the quality of new functions. The
existing test cases should also be re-executed in order to detect the
faults caused by imperfect debugging. Such an activity is called
regression testing [2,10]. In the process of software development,
more and more test cases will be included, thus often causing some
test requirements to be associated with more than one test case. To
reduce the cost of regression testing, test suite reduction can also
be applied to remove the redundant test cases [11].

The test suite reduction problem can be defined as follows
[6,7,9]:

Given:

e AsetT={ty,ty,...,t,} representing the test cases in the ori-
ginal test suite, where n denotes the number of test cases
(i.e., n=|T]).

e A set of test requirements R ={ry, 1, ..., I',} in which each
test requirement must be satisfied by at least one of the
test cases in T, where m denotes the number of test require-
ments (i.e., m = [R|).

e The binary relation between T and R: S={(t, r) | t satisfies r,
teTand reR}.

Objective:
o Find a subset of the test suite T, denoted by a representative
set RS, to satisfy all of the test requirements satisfied by T.

Let us consider the binary relation between Ty = {t1, t5, t3, ty, t5}
and R = {ry, 12, 13, 14, 5, s} that is shown in Table 1 as an illustra-
tion. If the set of test cases {t;, t,} are executed instead of Ty, all of
the requirements in Ry are still satisfied. Thus, the test cases {t3, ta,
ts} do not need to be executed. In this example, the subset {t;, t;} is
the minimal representative set.

In fact, the test suite minimization problem can be reduced to
the minimum set cover problem [6]. Karp proved that the set cover
problem is NP-complete [12]; yet, many techniques have been pro-
posed to obtain the near-optimal solution for the test suite reduc-
tion problem. Even though the representative sets produced by
these techniques are not guaranteed to be optimal, they can signif-
icantly decrease both the size of the test suite and the cost associ-
ated with its execution. However, to the best of our knowledge,
most of the existing reduction algorithms ignore the significant dif-
ferences in execution costs among test cases. In response to this
limitation, this paper presents a cost-aware test suite reduction
technique based on the concept of test irreplaceability.

The main contributions of this paper include: (C1) presenting a
cost-aware test case metrics, called Irreplaceability and
Elrreplaceability, based on the concept of test irreplaceability;

Table 1
An example of a test suite.

Test suite Ty Requirement set Rq

5] 1) I3 Ta I's Te
t . . .
ty . . .
t3 . .
ta .) .
ts) .

(C2) constructing a cost-aware framework that incorporates the
concept of test irreplaceability into some well-known test suite
reduction algorithms; (C3) empirically evaluating the effectiveness
of the presented test suite reduction techniques and evaluating
whether these methods select many test cases in common during
the test suite reduction process. It is important to note that, in
comparison with the preliminary version of this work (i.e., [9]), this
paper provides several additional contributions. Considering (C1)
as an example, although the test case metric, Irreplaceability,
was presented in [9], this paper further presents the enhanced ver-
sion, Elrreplaceability, which strictly dominates Irreplaceability.
Considering (C2), the work in [9] only explained how to use Irre-
placeability to evaluate the test cases and selected the test cases
based on the concept of the additional Greedy algorithm. This
paper further incorporates the presented cost-aware test case met-
rics into two additional well-known reduction algorithms. Consid-
ering (C3), in addition to the small subject programs used in [9],
this paper further includes empirical studies with a larger subject
program. Moreover, this paper evaluates the common rates of
the representative sets according to the concept developed by
Zhong et al. in [3].

The remainder of this paper is organized as follows. Section 2
reviews some well-known test suite reduction algorithms and
some cost-aware regression testing techniques. In Section 3, we dis-
cuss the differences in execution costs among test cases and explain
how the differences influence test suite reduction. Based on these
discussions, we show how to use test irreplaceability to evaluate
each test case. In Section 4, we propose the cost-aware algorithms
by incorporating test irreplaceability into the existing reduction
algorithms. Section 5 reports on the results from the empirical stud-
ies. Finally, Section 6 furnishes some concluding remarks.

2. Related work

Test suite reduction, test case prioritization, and test case
selection are three primary techniques to make regression testing
more efficient and effective [13]. As described in Section 1, test suite
reduction techniques remove the redundant test cases and then
produce a representative set of test cases that still yield a high level
of code coverage. Test case prioritization techniques reorder the
test cases according to some specific criteria such that the tests
with better fault detection capability are executed early during
the regression testing process. Test case selection techniques run
a subset of the test cases that execute the modified source code in
order to ensure the correctness of the functionalities of the updated
program [14]. Recall that this paper aims to present and
empirically evaluate the cost-aware test suite reduction algorithms.
In order to introduce the state-of-the-art relevant techniques,
Sections 2.1.1-2.1.3 first review three well-known test suite
reduction algorithms that will be used to explain the presented
technique in Section 4, and then Section 2.1.4 reviews some exist-
ing cost-aware test suite reduction techniques. To the best of our
knowledge, few cost-aware test case selection techniques have
been proposed in the literature, while a lot of cost-aware test case
prioritization techniques have been proposed and have received
considerable attention. Thus, Section 2.2 focuses on the reviews of
the cost-aware regression test case prioritization techniques.

2.1. Reviews of well-known test suite reduction techniques

2.1.1. Additional Greedy algorithm

The additional Greedy algorithm [15], hereafter called Greedy
for simplicity, is a well-known method for finding the near-optimal
solution to the test suite reduction problem. This algorithm
repeatedly moves the test which covers the most unsatisfied test

Download English Version:

https://daneshyari.com/en/article/550203

Download Persian Version:

https://daneshyari.com/article/550203

Daneshyari.com

https://daneshyari.com/en/article/550203
https://daneshyari.com/article/550203
https://daneshyari.com

