
Why software repositories are not used for defect-insertion
circumstance analysis more often: A case study

Lutz Prechelt a,⇑, Alexander Pepper b

a Freie Universität Berlin, Berlin, Germany
b Infopark AG, Berlin, Germany

a r t i c l e i n f o

Article history:
Received 7 October 2013
Received in revised form 1 May 2014
Accepted 1 May 2014
Available online 10 May 2014

Keywords:
Mining software repositories
Version archive
Bug tracker
Root cause analysis
Bug
Bugfix

a b s t r a c t

Context: Root-cause analysis is a data-driven technique for developing software process improvements in
mature software organizations. The search for individual process correlates of high defect densities, which
we call defect insertion circumstance analysis (DICA), is potentially both effective and cost-efficient as one
approach to be used when attempting a general defect root cause analysis. In DICA, data from existing
repositories (version archive, bug tracker) is evaluated largely automatically in order to determine condi-
tions (such as the people, roles, components, or time-periods involved) that correlate with higher-than-
normal defect insertion frequencies. Nevertheless, no reports of industrial use of DICA have been published.
Objective: Determine the reasons why DICA is not used more often by practitioners.
Method: We use a single-case, typical-case, revelatory-type case study to evaluate in parallel the impor-
tance of six plausible reasons (R1–R6). The case is based on 11 years of repository data from a small but
mature software company building a product in the high-end content management system domain and
describes a four person-months effort to make use of these data.
Results: While DICA required non-negligible effort (R3) and some degree of inventiveness (R2), the most
relevant roadblock was insufficient reliability of the results (R6) combined with the difficulty of assessing
this reliability (R5). We identify three difficulties that led to this outcome.
Conclusion: Current repository mining methods are too immature for successful DICA. Gradual improve-
ments are unlikely to help; different principles of operation will be required. Even with such different tech-
niques, issues with input data quality may continue to make good results difficult-to-have.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mining software repositories (MSR) is a set of techniques that
exploit the data stored in existing databases such as source code
version archives or issue tracking databases in order to obtain
relevant insights (general or specific) about software products or
software development processes. One of the potentially useful
application areas when mining software repository data is under-
standing defect insertion and defect removal processes. More
specifically, a process that we will call defect insertion circumstance
analysis (DICA) attempts to identify correlates of defect insertions:
when, where (contexts), and how they happen and who makes
them happen. Such insights can potentially be used to make
valuable process improvements.

The Case Study in the sense of Yin [28] is a research method
most suitable when ‘‘a ‘how’ or ‘why’ question is being asked about

a contemporary set of events over which the investigator has little
or no control’’.

1.1. Research question

The present article is a case study aimed at the research
question formulated in the title: Why aren’t MSR techniques used
for DICA more often than they are? The question is based on the
observation that, although the MSR community strives to address
and include practitioners, there are not many reports on MSR usage
from practitioners – which may be understandable for some types
of MSR but appears surprising for DICA.

We answer it by investigating a single, arguably common (see
below) case of industrial DICA as it occured in its real context.

1.2. Research contribution

The answer we found for the research question is twofold: First,
there appears to be no affordable method for assessing the

http://dx.doi.org/10.1016/j.infsof.2014.05.001
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +49 30 838 75115.
E-mail addresses: prechelt@inf.fu-berlin.de (L. Prechelt), alexander.pepper@

infopark.de (A. Pepper).

Information and Software Technology 56 (2014) 1377–1389

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.05.001&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.05.001
mailto:prechelt@inf.fu-berlin.de
mailto:alexander.pepper@infopark.de
mailto:alexander.pepper@infopark.de
http://dx.doi.org/10.1016/j.infsof.2014.05.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


reliability of the results obtained from a DICA. As a consequence,
practitioners find DICA to be too risky to be worth its substantial
effort. Second, the reliability of these results appears to be low.
As a consequence, practitioners cannot expect sound answers from
a DICA and will hence not find it sufficiently valuable.

Our article makes the following research contributions:

� It presents results of a 4-person-month DICA attempt for a large
11-year industrial software repository performed by praction-
ers at software company Infopark. We are not aware of any
other such report from an explicitly described industrial setting.
� It sorts out, at least roughly, the relative contributions of five

different potential reasons (R2–R6) for not using DICA more
often.
� It demonstrates the dominant weight of the two reasons

mentioned above. The second of these is known in the MSR
community and is being worked on, but the first, although
rather fundamental, does not currently receive much attention
at all.

1.3. Structure of this article

Section 2 introduces the domain of study. It introduces termi-
nology in Section 2.1, explains the basics of MSR in Section 2.2,
describes the procedure and potential benefits of DICA in Sec-
tion 2.3, and discusses the research question’s foundation: whether
DICA is indeed used rarely (Section 2.4).

Section 3 explains the design of the case study. It introduces the
Infopark DICA case (Sections 3.1 and 3.2), lists possible reasons
why DICA is performed rarely (Section 3.3) which we will use as
the propositions to be investigated by the case study, describes
the sources of evidence and the forms of triangulation used during
the case study (Section 3.4), and explains why a single-case study
is satisfactory in this particular situation (Section 3.5).

Sections 4–7 describe the four major phases of Infopark’s DICA
attempt:

� establishing bugfix links,
� discriminating true defects from other ‘‘bugs’’,
� mapping defect corrections to defect insertions, and finally
� performing the actual DICA.

Each of these sections describes what Infopark did, what prob-
lems it encountered, how it handled those problems, what results
it obtained, and then interprets these facts for the purposes of the
case study. Section 8 discusses threats to validity.

Section 9 discusses in how far the results should be viewed as
new when considering related work by other researchers and Sec-
tion 10 presents conclusions.

2. The domain of study: MSR and DICA

2.1. Terminology

We choose our terms such as to make the discussion in the
present article simpler; these definitions are not intended to be
fit for general purposes. In particular, we constrain our discus-
sion to phenomena observable on the level of program source
code, because that is the sort of information our data sources
provide.

Many of these terms talk about fuzzy phenomena so some of
the definitions are unavoidably vague. This fuzzyness is in fact an
important phenomenon in our case study, but resolving it is not
our goal, so we do not aim at making the definitions maximally
precise.

� A change is a set of additions, deletions, and modifications to
existing software that are being checked into the source code
version archive together. It is represented by the check-in trans-
action’s source code delta and its commit message.
� A defect is a property of source code that triggers avoidable

rework (possibly outside the observed timeframe).
� Rework is any modification performed on a section of program

source code that was written and checked in earlier. In our anal-
ysis, the unit of rework is a single change (check-in transaction).
We call rework avoidable if the need to make that change was in
principle known at the time of the original work. We call
rework unavoidable if that need arose only later or could (from
the point of view of the software developers) be known only
later.
� An issue is a property of software that is addressed in unavoid-

able rework. In practice, it is often difficult to discriminate
defect and issue, which turns out to be important in our study.
� Bug is a synonym for either a defect or an issue in everyday soft-

ware developer language and the discrimination is often not
made. A bugtracker entry is an entry in a change request data-
base and addresses either a defect or an issue.
� A bugfix is rework (specifically: a change) that is intended to

partially or fully resolve the defect or issue described by a bug-
tracker entry (even if that intention is not achieved). A bugfix
link is a pair of a bugtracker entry and its corresponding bugfix.
� A defect correction is a bugfix whose bugtracker entry describes

a defect (rather than an issue).
� A defect insertion is a change that introduces one or more defects

into the software. Note that a defect correction may introduce
new defects as well.

2.2. Mining software repositories (MSR)

In mature software processes, it will often be useful to employ
quantitative data obtained during process execution to optimize
day-to-day project control and to spot general improvement
opportunities for the process as a whole [12]. Such behavior is
for instance suggested by the process areas of CMMI levels 4 and
5 [5], in particular the Causal Analysis and Resolution level-5 pro-
cess area and its Determine Causes of Selected Outcomes goal.
Unfortunately, obtaining and analyzing suitable data can be costly.
One attractive approach for overcoming this cost problem would
be using data that is collected anyway and automating its analysis
[6]. This approach has been followed for a number of years by a
community working on ‘‘mining software repositories’’ (MSR) that
formed after some initial works in the 1990s [11,10] and holds a
yearly workshop/conference called MSR since 2004.1

MSR is defined as ‘‘analyz[ing] the rich data available in software
repositories to uncover interesting and actionable information
about software systems and projects’’ (MSR 2014 call for papers)
and the repositories in question are for instance ‘‘source control
systems, archived communications between project personnel,
and defect tracking systems’’ (MSR 2014 call for papers), require-
ments management databases, or project planning databases.

Topics in MSR include general infrastructure tasks such as data
extraction and cleansing as well as many types of applications, for
instance ‘‘characterization, classification, and prediction of soft-
ware defects’’, ‘‘analysis of change patterns and trends’’, ‘‘predic-
tion of future software qualities’’, building ‘‘models for social and
development processes’’, ‘‘models of software project evolution’’,
and reliability models, or supporting ‘‘search-driven software
development’’ (all from MSR 2014 call for papers).

1 http://www.msrconf.org, all MSR calls for papers can be found here. The
references and quotations from this website are as of 2012-04-26.

1378 L. Prechelt, A. Pepper / Information and Software Technology 56 (2014) 1377–1389

http://www.msrconf.org


Download English Version:

https://daneshyari.com/en/article/550206

Download Persian Version:

https://daneshyari.com/article/550206

Daneshyari.com

https://daneshyari.com/en/article/550206
https://daneshyari.com/article/550206
https://daneshyari.com

