
A class loading sensitive approach to detection of runtime type errors
in component-based Java programs

Wenbo Zhang a,⇑, Xiaowei Zhou a,b, Jianhua Zhang a,b, Zhenyu Zhang a,c, Hua Zhong a,c

a Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
b Graduate University, Chinese Academy of Sciences, Beijing 100190, China
c State Key Laboratory of Computer Science, Beijing 100190, China

a r t i c l e i n f o

Article history:
Received 25 June 2013
Received in revised form 20 February 2014
Accepted 2 April 2014
Available online 26 April 2014

Keywords:
Runtime error detection
Class loading
Component-based

a b s t r a c t

Context: The employment of class loaders in component-based Java programs may introduce runtime
type errors, which may happen at any statement related to class loading, and may be wrapped into var-
ious types of exceptions raised by JVM. Traditional static analysis approaches are inefficient to detect
them.
Objective: Our previous work proposed a semi-static detection work based on points-to analysis to detect
such runtime type errors. In this paper, we extend previous work by referencing the information obtained
from class loading to detect runtime type errors in component-based Java programs, without the need to
running them.
Method: Our approach extends the typical points-to analysis by gathering the behavior information of
Java class loaders and figuring out the defining class loader of the allocation sites. By doing that, we
obtain the runtime types of objects a reference variable may point to, and make use of such information
to facilitate runtime type error detecting.
Results: Results on four case studies show that our approach is feasible, can effectively detect runtime
errors missed by traditional static checking methods, and performs acceptably in both false negative test
and scalability test.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing adoption of component-based software
development (CBSD) as a mainstream approach of software engi-
neering [23], Java programs have been the most prevalent software
in Web world, such as Servlet/JSP, EJBs, OSGi1-based programs, and
so on. Error detections of Java programs are invaluable for their
comprehensive application, while type checking is one of such
detection mechanisms. Type checking for Java can be done statically
or dynamically. Type-related defects missed by Java compilers and
captured by JVM’s runtime type checking are conventionally named
runtime type errors [12]. Such errors are very common in Java
program, such those caused by unsafe casts [18].

Runtime type errors are usually apt to occur in component-based
Java programs for the following reasons. First, in component-based
Java programs, component containers, like web application servers
and OSGi frameworks, different custom class loaders are often

allowed, and classes are defined at runtime [14]. For example, in
OSGi-based programs, classes in each bundle (OSGi-compliant com-
ponent) are defined by the bundle’s class loader [21]. Nevertheless,
in Java web systems, classes of the web application and those of its
hosting application server are also defined by different class loaders.
The inconsistent of class loaders in classes loading contributes in the
majority of runtime errors in Java. In this paper, we will focus on
these scenarios and give our solution to detect this kind of runtime
errors.

Second, it is very common that in a component-based Java
program, components may contain same-named classes.2 For exam-
ple, JOnAS 5.2.0, an OSGi-based Java EE application server, has 77
bundles, which are active in execution, and there are 105 distinct
class names3 of which each is owned by more than one class.
Same-named classes usually result from the extensive use of appli-
cation frameworks and third-party libraries. The instance of a class
or its subclass created in one component may propagate to other

http://dx.doi.org/10.1016/j.infsof.2014.04.005
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 10 62661583 630.
E-mail address: zhangwenbo@otcaix.iscas.ac.cn (W. Zhang).

1 http://www.osgi.org.

2 Also known as duplicated classes.
3 When we mention class name, we mean its fully qualified name, which includes

the name of the Java package containing the class.

Information and Software Technology 56 (2014) 1076–1085

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.04.005&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.04.005
mailto:zhangwenbo@otcaix.iscas.ac.cn
http://www.osgi.org
http://dx.doi.org/10.1016/j.infsof.2014.04.005
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


components that contain a class of the same name. Since same-
named classes in different components are defined by different class
loaders and thus represent different runtime types [12], the propa-
gation may cause some reference variables to point to objects with
wrong runtime types. Compilers, which focus more on static types,
cannot detect this kind of. In realities, such errors are mostly found
by JVM as runtime errors and handled as exceptions, such as Class-
CastException and ArrayStoreException.

Eliminating same-named classes will prevent this kind of
errors. A brute force solution is to delete those classes until there
is only one class left for each class name. However, this approach
may have undesired results. Same-named classes may have sepa-
rate implementations, because they may come from different
third-party libraries, and each of them may have a set of static
fields, which take effect when loaded. If only one such class is per-
mitted to be loaded, the semantics of the program may be dam-
aged. Avoiding such errors by coding standards or best practices,
for example, prohibiting the instances of same-named classes (or
their subclasses) to be propagated beyond their own components,
is also impractical. First, which classes will become the same-
named classes are usually not known until those components are
integrated together, especially when many third-party libraries
are integrated at the same time. Second, components may come
from various vendors and constraint these vendors comply with
the same coding standard is also ineffective. Third, some third-
party components are casually migrated from legacy code, such
as the official OSGi-compliant log4j 1.2.16, which imports and
exports [21] many Java packages and the clarity of component
interface is sacrificed. Exceptions caused by runtime type errors
may occur at almost every possible position of the program, ren-
dering writing exception handling code to recover from these
errors can be very hard [18].

Statically detecting runtime type errors will help programmers
find out faults at early stage and enables corresponding remedies.
There have been some works using static analysis to detect run-
time type errors caused by unsafe casts [16,17,24,30]. However,
these works do not consider runtime type discrepancies caused
by class loaders and thus cannot detect runtime type errors
effectively.

In our previous work [33], we propose a class loading sensitive
approach based on points-to analysis [9] to detect runtime type
errors in component-based Java programs. We invoke class loaders
provided by component containers to get their behavior and figure
out the defining class loader of the allocation sites [15]. Then the
runtime types of objects a reference variable may point to can be
obtained. In this paper, we extend our previous work to acquire
the runtime types of the reference variables from the behavior
information of class loaders. Based on these runtime types, we
check every program statement where JVM may raise exception
[3] for runtime type error, and assess the possibility that related
variables pointing to wrong-typed allocation sites. Besides, we also
give the formal descriptive pseudo code to integrate our detection
progress based on both points-to analysis and class loader
information.

We implement our method as a prototype tool and conduct four
case studies to show the feasibility and effectiveness of our method
and its performance in false negative test and scalability test.

Contribution of this work is at least three-folded. First, we give a
solution to detect runtime type error related to class loaders. Sec-
ond, we use the de facto dynamic module system OSGi [11] as the
framework to implement our open-source prototype tool. Third,
we conduct a case study to validate our method and show it
promising.

The remainder of this paper is organized as follows. Section 2
gives preliminaries by stating the problem of runtime type
errors in component-based Java programs. Section 3 gives a short

motivation and presents our approach in Section 4. Section 5 talks
about the implementation of our prototype tool as an evaluation,
presents results of case studies, and talks about threats to validity
of the results observed, followed by Section 6, which introduces
related work. Section 7 concludes the paper and gives future work.

2. Preliminaries

Before we give the problem and elaborate on our solution, we
first introduce the class loading mechanism and OSGi framework
as preliminaries.

2.1. Class loading in Java

In Java, all the classes are loaded into JVM by class loaders [14]
at runtime. Class loaders are also Java objects (except for the boot-
strap class loader provided by JVM which is used to load some core
classes of Java Runtime Environment). A class loader may delegate
to another class loader to look for a class; after several (may be
zero) delegations, one class loader will finally load the class by
itself. The class loader, which is requested for loading a class (by
passing the class name as parameter), is called the initiating class
loader of the class, and the one, which loads the class by itself after
delegations, is called the defining class loader of this class; the two
class loaders may be same. A runtime class is identified both by
its class name and its defining class loader, therefore two runtime
classes must not be the same if they have different defining class
loaders, even if they had the same name or were created from
the same class file.

Java programmers may create their own custom class loaders,
and component containers usually also create several class loaders
for themselves and for components hosted in them. As a result, in a
Java runtime environment, there may exist several class loaders
besides those provided by JVM.

A class usually has a lot of symbolic references4 [14] to other
classes, such as its super class, classes included in its field types
and the classes referred to in the code of its methods and so on.
The defining class loader of one class will initiate the loading of these
referred to classes when needed.

2.2. Type error detection

Static detection of type errors in a program can be conducted by
checking whether reference variables in the program may point to
objects, which do not have correct types, using points-to analysis.
Some work uses points-to analysis to check the safety of casts [16].

Points-to analysis for Java computes a points-to relation that
maps each reference variable to a superset of the objects that it
may point to during execution. In points-to analysis, object is usu-
ally abstracted to allocation site (the location of ‘‘new’’ statement
for creating this object). When a program is running, an allocation
site may be passed several times along the execution trace and
many objects may be created but of the same type. Thus, the
abstraction of objects to allocation sites will satisfy the need of
checking for type errors.

2.3. The OSGi framework

We take OSGi as our case of Java component model and
framework.

An OSGi-based program consists of several bundles interacting
with each other. Fig. 1 shows the architecture of an OSGi-based

4 These references only provide names of the classes they refer to, so they are
symbolic.

W. Zhang et al. / Information and Software Technology 56 (2014) 1076–1085 1077



Download English Version:

https://daneshyari.com/en/article/550246

Download Persian Version:

https://daneshyari.com/article/550246

Daneshyari.com

https://daneshyari.com/en/article/550246
https://daneshyari.com/article/550246
https://daneshyari.com

