
Efficient synthesis of feature models

Steven She a, Uwe Ryssel b, Nele Andersen c, Andrzej Wąsowski d,⇑, Krzysztof Czarnecki a

a Generative Software Development Lab, Department of Electrical and Computer Engineering, University of Waterloo 200 University Avenue West Waterloo, Ontario, N2L 3G1, Canada
b Technische Universität Dresden, Fakultät Informatik, Institut für Angewandte Informatik, D-01062 Dresden, Germany
c Configit A/S, Kristianiagade 7, 2100 Copenhagen, Denmark
d IT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen, Denmark

a r t i c l e i n f o

Article history:
Available online 3 February 2014

Keywords:
Feature models
Variability models
Software product lines

a b s t r a c t

Context: Variability modeling, and in particular feature modeling, is a central element of model-driven
software product line architectures. Such architectures often emerge from legacy code, but, creating fea-
ture models from large, legacy systems is a long and arduous task. We describe three synthesis scenarios
that can benefit from the algorithms in this paper.
Objective: This paper addresses the problem of automatic synthesis of feature models from propositional
constraints. We show that the decision version of the problem is NP-hard. We designed two efficient
algorithms for synthesis of feature models from CNF and DNF formulas respectively.
Method: We performed an experimental evaluation of the algorithms against a binary decision diagram
(BDD)-based approach and a formal concept analysis (FCA)-based approach using models derived from
realistic models.
Results: Our evaluation shows a 10 to 1,000-fold performance improvement for our algorithms over the
BDD-based approach. The performance of the DNF-based algorithm was similar to the FCA-based
approach, with advantages for both techniques. We identified input properties that affect the runtimes
of the CNF- and DNF-based algorithms.
Conclusions: Our algorithms are the first known techniques that are efficient enough to be used on
dependencies extracted from real systems, opening new possibilities of creating reverse engineering
and model management tools for variability models.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Variability models are central to development and management
of software product lines (SPL) and comprise of simple problem
space models and typically complex solution space models. A prob-
lem space model describes major decisions made during custom-
ization—such as whether an Enterprise Resource Planning (ERP)
system should include an e-commerce platform or not. The solu-
tion space model explains how the problem space decisions affect
the realization. For example, how the e-commerce platform is wo-
ven into the implementation, by extending data models, user inter-
faces and services.

Variability models contain concepts referred to as decisions [1],
features [2] or variation points [3], depending on the abstraction
level. The abstract models tend to contain relatively few concepts

(up to hundreds in the largest models1), while the low level con-
crete models can reach thousands of variation points. These concepts
are typically organized hierarchically, and related to each other
using constraints. There exist multiple commercial (Pure Systems
GmbH, Big Lever Software Inc.) and research [4–6,1] tools for vari-
ability modeling. Recognizing the increasing significance of this mar-
ket segment, The Object Management Group (OMG) has initiated [7]
a standardization process for the Common Variability Language
(CVL).

Feature models [2,8] are a prominent notation used in variability
modeling. Applications of feature modeling include automatic gen-
eration of product configurators, driving code generators [8] and
build systems [9] to compose individual members of an SPL, and
driving test and verification [10,11]. Feature models will also be
part of the CVL standard [7]. In this paper, we use the term feature
in the abstract unifying sense, meaning either a decision or a
variation point. This simplification is justified, since we will be
exploiting the combinatorial structure of features, which is similar

http://dx.doi.org/10.1016/j.infsof.2014.01.012
0950-5849/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +45 7218 5086.
E-mail addresses: shshe@gsd.uwaterloo.ca (S. She), uwe.ryssel@tu-dresden.de

(U. Ryssel), nele.andersen@gmail.com (N. Andersen), wasowski@itu.dk (A. Wąsowski),
kczarnec@gsd.uwaterloo.ca (K. Czarnecki). 1 Based on personal communications with Big Lever and Pure Systems.

Information and Software Technology 56 (2014) 1122–1143

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2014.01.012&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2014.01.012
mailto:shshe@gsd.uwaterloo.ca
mailto:uwe.ryssel@tu-dresden.de
mailto:nele.andersen@gmail.com
mailto:wasowski@itu.dk
mailto:kczarnec@gsd.uwaterloo.ca
http://dx.doi.org/10.1016/j.infsof.2014.01.012
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


in both the solution space and in the problem space.
We show a feature model for a power management subsystem

in Fig. 1. The feature diagram is composed of rectangles or features,
and lines connecting a parent feature to its children. An empty cir-
cle indicates an optional feature, and a filled circle indicates a man-
datory feature. An empty arc between two or more features
denotes an xor-group where exactly one of its features must be se-
lected. Feature diagrams can also support or-groups—where one or
more features must be selected, or mutex-groups—where at most
one feature must be selected. Additional cross-tree constraints
can be specified as part of an arbitrary cross-tree formula below
the diagram, or as edges for either implies or excludes constraints.

SPLs are typically large software projects that often result from
a long lasting evolution, based on substantial legacy code. Indus-
trial SPLs use models containing thousands of features that mix
both the problem and the solution spaces. For instance, the vari-
ability in the Linux kernel has more than 5000 features that de-
scribe its x86 architecture [9]. At the same time, other SPLs, such
as the FreeBSD kernel, do not use any variability models and could
benefit from having a feature model. This situation and scenario
also arises in industry as we found in our communications with
Pure Systems, the company behind the pure::variants tool.

Reverse engineering techniques for variability models would
ease adoption of product line practices. They enable a smoother
migration of legacy code to systematic product line architectures
and their subsequent evolution. This paper addresses the problem
of feature model synthesis, which is the core algorithmic part of re-
verse engineering. Given a set of features and dependencies, our
algorithms constructs feature diagrams that contain a hierarchy
of features, enriched by cross-hierarchy implies and excludes con-
straints. Our algorithms assume that the input is expressed in
propositional logics. In practice, the input dependencies can be
either specified by engineers, or automatically mined from the
source code using static analysis [12]. Furthermore, effective man-
agement of large feature models requires model management
operations such as merge, compare, diff, and project [13]. Such
operations ease model evolution by allowing developers to com-
pare models to assess the impact of model edits or build large
models by composing smaller ones. The feature model synthesis
problem is also core to these model operations that are defined
via logical operators on formulas derived from the input models
[13]. We describe these scenarios further in Section 2.

In this paper, we formally define the problem of synthesis of
feature models, discuss its complexity, derive semantics-based
algorithms and argue for their correctness. Technically, we synthe-
size not a feature model, but a feature graph, which is a symbolic
representation of all possible feature models that could be sound
results of the synthesis. Then, we show that any of these models

can be efficiently derived from the feature graph. Our contributions
include:

� Definition of feature model synthesis as an algorithmic prob-
lem, an NP-hardness result, and a complexity driven analysis
of suitable solution techniques.
� An algorithm for synthesis of feature models from conjunctive

normal form (CNF) formulas that is at least 10-times faster than
previously known algorithms based on our presented perfor-
mance evaluation.
� An efficient algorithm for synthesis of feature models from dis-

junctive normal form (DNF) formulas.
� An evaluation of our algorithms using a dataset derived from

realistic feature models and a dataset of generated models. This
evaluation includes a comparison of the CNF-based algorithm
against an existing BDD-based algorithm [14], and a compari-
son of the DNF-based algorithm against an FCA-based algorithm
[15]. We discuss factors for predicting the runtime of our
algorithms.

The above techniques produce feature models, but can be easily
adjusted to other languages, such as the propositional part of var-
iability specifications of the current CVL proposal. A variability
specification in CVL is essentially a cardinality-based feature model
and we can reuse our techniques for feature modeling to synthe-
size these trees. More importantly, the algorithm for synthesis of
feature models from a constraint in CNF form is the first known
technique for this problem. These synthesis algorithms can be ap-
plied to data extracted from real systems. The previous work of the
same authors [14] has shed light on the mathematical structure of
the problem, but has failed to provide scalable algorithms.

We first analyze computational complexity of the individual
steps in the synthesis of feature models and of variations of the
problems for different input representations (i.e., formulas in CNF
and DNF). The complexity analysis allows us to decide what the
promising reductions of the problem are; for example using SAT-
based techniques for synthesis of or-groups from DNF formulas,
and not using these techniques for CNF formulas. We exploit this
in the design of CNF and DNF algorithms that we describe in the
following sections.

1.1. Extensions from our previous contribution

The previous paper on the subject [16] introduced the FGE-CNF
and FGE-DNF algorithms for synthesizing feature graphs from for-
mulas in CNF and DNF respectively. We expand the previous paper
with the following contributions:

� Extended Section 2 with additional workflows and scenarios
from [17].
� Expanded the evaluation dataset for both FGE-CNF and FGE-DNF

with 267 models from the SPLOT model repository [18].
� Expanded description of the BDD-based implementation from

[14], and the formal concept analysis-based implementation
by Ryssel et al. [15] according to the FGE algorithm in Fig. 7.
� A comprehensive evaluation of FGE-DNF against the formal con-

cept analysis-based algorithm by Ryssel et al. [15]. We identify
differences between the two algorithms and compare the run-
times of the two algorithms in Section 8.

2. Scenarios and motivation

In this section, we describe several scenarios involving feature
model synthesis. We describe the entire workflow from the input
artifacts, to how they are transformed into the inputs used by
our synthesis algorithms. While feature model synthesis is onlyFig. 1. Feature model of a power management subsystem.

S. She et al. / Information and Software Technology 56 (2014) 1122–1143 1123



Download English Version:

https://daneshyari.com/en/article/550250

Download Persian Version:

https://daneshyari.com/article/550250

Daneshyari.com

https://daneshyari.com/en/article/550250
https://daneshyari.com/article/550250
https://daneshyari.com

