Information and Software Technology 55 (2013) 252-266

=

Contents lists available at SciVerse ScienceDirect = INFORMATION |

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof —

Usage and testability of AOP: An empirical study of Aspect]

Freddy Munoz?, Benoit Baudry **, Romain Delamare®, Yves Le Traon®

2 INRIA/IRISA, Campus de Beaulieu, 35042 Rennes, Cedex, France
> University of Alabama, Department of Computer Science, Tuscaloosa, AL, USA
€ University of Luxembourg, Campus Kirchberg, Luxembourg, Luxembourg

ARTICLE INFO ABSTRACT

Article history:

Received 4 May 2011

Received in revised form 31 July 2012
Accepted 8 August 2012

Available online 4 September 2012

Context: Back in 2001, the MIT announced aspect-oriented programming as a key technology in the next
10 years. Nowadays, 10 years later, AOP is still not widely adopted.

Objective: The objective of this work is to understand the current status of AOP practice through the anal-
ysis of open-source project which use Aspect].

Method: First we analyze different dimensions of AOP usage in 38 Aspect] projects. We investigate the
degree of coupling between aspects and base programs, and the usage of the pointcut description lan-

l(eywordsi . guage. A second part of our study focuses on testability as an indicator of maintainability. We also com-
Aspect-oriented programming o
Metrics pare testability metrics on Java and Aspect] implementations of the HealthWatcher aspect-oriented

benchmark.

Results: The first part of the analysis reveals that the number of aspects does not increase with the size of
the base program, that most aspects are woven in every places in the base program and that only a small
portion of the pointcut language is used. The second part about testability reveals that Aspect] reduces
the size of modules, increases their cohesion but also increases global coupling, thus introducing a neg-
ative impact on testability.

Conclusion: These observations and measures reveal a major trend: AOP is currently used in a very cau-
tious way. This cautious usage could come from a partial failure of Aspect] to deliver all promises of AOP,
in particular an increased software maintainability.

Empirical analysis

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Object-orientation (00) pushes forward ideas such as modular-
ity, abstraction, and encapsulation [34]. It promotes the separation
of concerns as a cornerstone to improve the maintainability, evolu-
tion, and comprehension of a software system. Concerns are fea-
tures, behavior, data, etc.,, which are derived from the system
requirements, domain, or even its internal details [44]. Since a
modular unit encapsulates the behavior of a single concern, its
maintenance and evolution should require modifying a single
module. This results in a major improvement in comparison to
non-modular design, which requires modifying several pieces of
code several times. Thus, maintaining a system conceived with
object-orientation requires less effort than maintaining non-object
oriented systems.

However, separation of concerns and modularity cannot always
be achieved with 00. Some concerns cannot be neatly separated in
objects, and hence, they are scattered across several modules in the

* Corresponding author.
E-mail addresses: freddy.munoz@inria.fr (F. Munoz), benoit.baudry@inria.fr
(B. Baudry), rdelamare@cs.ua.edu (R. Delamare), yves.letraon@uni.lu (Y. Le Traon).

0950-5849/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.08.003

software system. Such concerns are referred as crosscutting con-
cerns because they are realized by fragments of code that bear
identical behavior across several modules. Maintaining a crosscut-
ting concern means modifying each fragment of the scattered code
realizing that concern; therefore, increasing the coding time, error
proneness,! and the maintenance cost.

Aspect oriented programming (AOP) appeared in 1997 as a
mean to cope with this problem [25]. The idea underlying AOP is
to encapsulate the crosscutting behavior into modular units called
aspects. These units are composed of advices that realize the cross-
cutting behavior, and pointcut descriptors, which designate the
points in the program where the advices are inserted. The expres-
sive features provided by aspect-oriented languages were meant to
enable developers to encapsulate tangled code in a very versatile
way; therefore improving maintainability of the system by
allowing the evolution of single units instead of scattered code
fragments.

Since its introduction in 1997, many technical documents, re-
search papers, books, and conference venues discussed and com-

T A recent study [17] demonstrates that crosscutting concerns increase the
proneness to errors in OO system.

http://dx.doi.org/10.1016/j.infsof.2012.08.003
mailto: freddy.munoz@inria.fr
mailto: benoit.baudry@inria.fr
mailto:rdelamare@cs.ua.edu
mailto:yves.letraon@uni.lu
http://dx.doi.org/10.1016/j.infsof.2012.08.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

F. Munoz et al./ Information and Software Technology 55 (2013) 252-266 253

mented on AOP and its benefits. In 2001 the MIT announced AOP as
a key technology for the future 10 years [46]. Later, in 2002 a grow-
ing scientific community launched the first International Confer-
ence on Aspect Oriented Software Development (AOSD), and
about 3002 documents cited Aspect] (the most popular incarnation
of AOP) and AOP. The same year less than 10 open-source projects
were actually using such technology in the source-forge repository.

Nowadays, 10 years after the MIT announcement, the number
of documents about AOP and Aspect] has grown to more than
2500.2 During the same period, the number of projects using AOP
has increased only to about 60 projects (less than 0.5% of source-
forge’s projects developed using Java in the period from 2001 to
2008 integrate aspects). When facing this apparent paradox, we
can wonder what prevents a more extensive use of AOP in what
context it has been a good solution.

Previous work has identified two characteristics of aspect-
oriented languages that hinder maintainability and evolvability:
(1) the fragility of the pointcut descriptors that leads to the evolu-
tion paradox [45,27]; (2) the ability of aspects to break the object-
oriented encapsulation [2,35]. Also, when looking at aspects for
analysis or testing, another paradox seems to occur: aspects allow
the extraction of scattered code in a single unit, thus improving the
consistency of modules, but aspects can also increase coupling be-
tween modules when woven at multiple places. This increased
coupling has a negative impact on testability, since it prevents an
incremental approach for testing. In turn, this decreases maintain-
ability because the testing effort will be impacted each time the
program evolves.

In this paper we present a two-step empirical analysis of AOP,
which is an extension of the experiment presented at ICSM’'09
[36]. First, we analyze the current usage of aspect-related features
in open source projects. We study 38 open source aspect-oriented
projects developed with the Java and Aspect] languages in the first
study. In particular, we analyze the number of aspects with respect
to size of programs, the degree to which aspects break the object-
oriented encapsulation and how much of the expressive power for
pointcut descriptors is actually used. This analysis disregards the
pointcuts leading to augmentation and crossing advices (i.e., ad-
vices that do not disturb the proceed of base methods). This reveals
that aspects are used in a very cautious way. This leads to the sec-
ond part of our experiment in which we investigate a possible rea-
son for this distrust.

The second step of the experiment aims at evaluating if AOP has
kept its promises of better maintainability than OO. Our hypothesis
here is that AOP does not keep its promises, it can be a reason why
developers do not trust this techniques. We focus on testability as
an indicator of maintainability. We compare the evolution of test-
ability indicators over three versions of a system implemented
with both Java and Aspect] technologies. This reveals that in the
Aspect] versions, modules are more cohesive but are also more
coupled. The increased coupling among modules suggests that As-
pect] reduces testability by introducing modules that cannot be
tested in isolation.

This empirical inquiry of aspects requires collecting and measur-
ing data from aspect oriented programs. Thus, as an initial contribu-
tion for this work, we have developed tools for measuring different
metrics on Aspect] programs. First, we extended Briand’s OO met-
rics framework [9] with aspect-oriented specific features such as
advices or invasive advices. The framework models all necessary
information to compute metrics related to coupling, complexity,
and modularity in aspect-oriented programs. Then, we developed
a tool to measure these metrics on Aspect] programs. The tool also
contains a module to measure Aspect] specific metrics.

2 According to an estimation using the google scholar search engine.

We observe four major trends: (1) advices affect a small portion
of points in the project, and this proportion decreases with the pro-
ject size; (2) few advices break the encapsulation, and those who
break it are used with very precise pointcut descriptors; (3) point-
cut descriptors are defined with only half of the available expres-
sions; (4) aspects modularize a series of concerns increasing the
software’s modularity, however, this modularization introduces
coupling that hinder testability.

This paper is structured as follows: Section 2 introduces the as-
pect-oriented programming concepts. Section 3 describes the the-
oretical framework and the tooling support backing our empirical
study. Section 4 describes the experimental data and the research
questions this study inquiries. Section 5 presents the analysis re-
sults for each research question. Section 7 discusses the related
work. Section 8 concludes the paper by summarizing the main re-
sults and discussing their implications for maintenance and AOP
adoption.

2. Aspect-oriented programming: the case of Aspect]

In aspect-oriented programming (AOP), aspects are defined in
terms of two units: advices, and pointcut descriptors (PCD). Advices
are units that realize the crosscutting behavior, and pointcuts des-
ignate well-defined points in the program execution or structure
(join points) where the crosscutting behavior is executed. We illus-
trate these elements through two code fragments belonging to a
banking aspect-oriented application. The first (Listing 1) presents
the PCD declaration for logging (lines 2-5) and transaction (lines
7-10) concern, whereas the second (Listing 2) presents an advice
(lines 3-14) realizing a transaction concern.

2.1. Pointcut descriptors

In Aspect], a PCD is defined as a combination of names and
terms.

Names are used to match specific places in the base program
and typically correspond to a method’s qualified signature. For in-
stance, the name boolean Account.withdraw (int) in Listing 1
(line 3) matches a method named withdraw that returns a type
boolean, receives a single argument of type int, and is declared
in the class Account.

Terms are used to complete names and define in which condi-
tions the places matched by names should be intercepted. Aspect]
defines three types of terms: wildcards, logical operators, and prim-
itive pointcut descriptors. The combination of names and terms is
referred to as expression.

Wildcards serve to enlarge the number of matches produced by
a name. The Aspect] PCD language defines three wildcards: “%”,
“..”,and “+". The PCD transaction (Listing 1) presents an example
of their usage. In line 8, the wildcard * enlarges the matchings of
the name boolean Account.% (int) to any method in the class
Account, which returns a type boolean, and receives a single
argument of type int. The wildcard + is used at the end of a type
pattern, and indicates that sub-types should also be matched.

public aspect BankAspect {
pointcut logTrans (int amount) :
(call (boolean Account.withdraw(int)) ||
call (boolean Account.deposit (int)))
&& args (amount) ;

[= RS BN SCR Ry

pointcut transaction():
execution (boolean Account.= (int)) &&
cflow (execution (void Bank.operation(..));

S w© o~

Listing 1. Example of Aspect] pointcuts.

Download English Version:

https://daneshyari.com/en/article/550338

Download Persian Version:

https://daneshyari.com/article/550338

Daneshyari.com

https://daneshyari.com/en/article/550338
https://daneshyari.com/article/550338
https://daneshyari.com/

