Information and Software Technology 55 (2013) 357-364

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

System integration by developing adapters using a database abstraction

Arjan J. Mooij

Embedded Systems Institute, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 18 July 2011

Received in revised form 28 August 2012
Accepted 31 August 2012

Available online 8 September 2012

Context: Large software systems are usually developed by integrating several smaller systems, which
may have been developed independently. The integration of such systems often requires the develop-
ment of a custom adapter (sometimes called mediator or glue logic) for bridging any technical incompat-
ibilities between the systems.

Adapter development often focuses on how to respond to events from the external interfaces, e.g., by
applying data conversions and performing events on (other) external interfaces. Such an operational
focus is closely related to an implementation of the adapter, but it makes it complicated to reason about
complex adapters. For example, it requires a lot of effort to understand the relation that the adapter
establishes between the systems to be integrated, and to avoid any internal inconsistencies.

Objective: This article investigates a way to develop adapters in terms of a more abstract, model-based
specification. Experts from the application domain should be able to reason about the specification,
and the specification should contain enough details to generate an implementation.

Method: Based on a few industrial adapters from the domain of Maritime Safety and Security, we study
ways to specify them conveniently, and ways to generate them efficiently. On this basis, we identify an
approach for developing adapters. In turn, this approach is validated using an additional set of adapters.
Results: After abstracting from the details of the interface technologies, the studied adapters could be
generated using techniques for incremental view maintenance. This requires an adapter specification
in terms of database views to relate the main semantic concepts in the application domain.

Conclusion: For developing adapters, it can be useful to model all interface technologies as database oper-
ations. Thus adapters can be specified using database views, which improve the conceptual understand-
ing of the adapters. Publish/subscribe-style adapters can then be generated using incremental view
maintenance.

Keywords:

Model-driven development
Distributed systems

Adapter generation
Incremental view maintenance

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Component-based software engineering (CBSE) and service-
oriented computing (SOC) advocate the development of large soft-
ware systems by integrating several smaller systems. In turn, these
systems may have been developed independently, and hence there
may be various technical incompatibilities between them [1].
These incompatibilities may range from the data that is communi-
cated to the protocols that are used to communicate the data. An
approach to resolve these incompatibilities, without changing the
systems to be integrated, is to develop a custom adapter (some-
times called mediator or glue logic).

Adapter development often focuses on how to respond to
events from the external interfaces, e.g., by applying data conver-
sions and performing events on the (other) external interfaces.
Such an operational focus is closely related to an implementation,
but it makes it complicated to reason about complex adapters. For
example, it requires a lot of effort to understand the relation that

E-mail address: Arjan.Mooij@esi.nl

0950-5849/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.08.015

the adapter establishes between the systems to be integrated,
and to avoid any internal inconsistencies.

The required functionality of an adapter is usually rather lim-
ited. This motivates the question whether it is possible to generate
custom adapters automatically from some convenient (handmade)
specification. This article investigates a way to develop adapters
using an abstract, model-based specification. Experts from the
application domain should be able to reason about the specifica-
tion, and the specification should contain enough details to be able
to generate an implementation.

We study a few industrial adapters from the domain of
Maritime Safety and Security. Many of them interact with their
environment through a DDS-based middleware, which uses a pub-
lish/subscribe architecture; a similar kind of interaction style is
used for systems such as RSS, Twitter, etc. We identify a way to
specify these industrial adapters conveniently, and to generate
them efficiently. Afterwards, we validate this approach using an
additional set of adapters from this application domain.

Contributions. We show that it can be useful to model all inter-
faces in terms of database operations. Thus we can apply all kinds

http://dx.doi.org/10.1016/j.infsof.2012.08.015
mailto:Arjan.Mooij@esi.nl
http://dx.doi.org/10.1016/j.infsof.2012.08.015
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

358 A.J. Mooij/Information and Software Technology 55 (2013) 357-364

of techniques from the fields of databases and data mediation [2]
to the development of adapters.

In particular, we show that the studied adapters can effectively
be specified in terms of database views. Such a view-based specifi-
cation is declarative in nature, and it focuses on what needs to be
established instead of how it is established. An additional advan-
tage is that, in general, data modelling is considered to be simpler
(or better understood) than behavioural modelling.

We also show that, using such a database abstraction of the
interfaces, publish/subscribe-style adapters can be generated
using techniques for incremental view maintenance [3-6]. Thus,
based on a declarative view-based adapter specification, we
derive an operational adapter implementation in terms of how
to respond to events on the external interfaces (compare also,
eg. [7]).

Overview. In Section 2 we discuss a motivating industrial case
study, followed in Section 3 by our proposed adapter development
approach. In Section 4 we illustrate this approach by providing
additional technical details. In Section 5 we compare the adapter
that we have developed with the proposed industrial prototype,
and in Section 6 we discuss additional examples. Finally, in Sec-
tion 7 we evaluate the approach, and in Section 8 we draw some
conclusions.

2. Industrial case study

We consider an industrial prototype system for situational
awareness from the domain of Maritime Safety and Security. This
prototype system consists of several components for processing,
integrating, and interpreting the vessel observations from several
sensors (like radars). In particular, there are many adapters, which
together cover a whole class of industrial adapters. As a running
example we consider an adapter that integrates an additional
sensor with the core system.

2.1. Core system

The components of the core system communicate with each
other using a DDS-based middleware (Data Distribution Service
for Real-time Systems [8]), which offers a data-centric publish/
subscribe (DCPS) architecture for distributed systems. DDS-based
middleware is used for mission-critical information manage-
ment, also including automated financial trading and air traffic
management. The PADRES platform [9] uses a similar paradigm
in the context of distributed workflow management systems.

Components that interact with each other using a DDS do not
directly address each other. Instead, they interact in terms of top-
ics, which are named data channels that are stored in the DDS.
Each topic is associated with a data type and a primary key; a topic
can hold multiple instances of the data type if their values of the
primary key are different. A basic interaction pattern is that one
component publishes instances to a topic, and another component
receives these instances by subscribing to the topic. Components
can also query the instances of a topic (the last published instance
per value of the primary key) in terms of SQL. Low-level formaliza-
tions of such primitive operations have been studied by [10-12];
we will adopt a more high-level perspective.

In such a publish/subscribe system, the most important artefact
for integrating components is the data model. The fragment of the
data model that we consider consists of three topics to represent
the most-recent vessel information:

e intel: iid, mmsi, name;
e system: sid, iid, lid;
e local: lid, longitude, latitude, destination.

Each topic has a designated identifier field as the primary key,
respectively, iid, sid, and lid. Topic intel represents static vessel
data such as its name and its mmsi number, which is a maritime
vessel identifier. Topic local represents dynamic vessel data such
as its position (longitude and latitude) and (the name of) its desti-
nation. Topic system is primarily used to link instances of the other
topics.

2.2. Additional sensor

The additional sensor is a maritime AIS (Automatic Identifica-
tion System [13]) receiver. Every vessel has an on-board AIS tran-
sponder that uses several message types and reporting frequencies
to broadcast information about the vessel. An AIS receiver collects
these broadcasted AIS messages, and produces a TCP/IP stream of
messages that are encoded using a standard from the NMEA (Na-
tional Marine Electronic Association). We only consider the two
main message types (after simplification) to represent the most-
recent vessel information:

e point: mmsi, longitude, latitude;
e voyage: mmsi, destination, name.

Each message type contains the unique mmsi number of the
reporting vessel. Message type point represents dynamic data such
as position (longitude and latitude). Message type voyage repre-
sents relatively static data such as name and destination.

2.3. Integration

The interface of this additional sensor does not match the inter-
face of the core system. The technical incompatibilities range from
the data that is communicated to the protocols that are used to
communicate the data. The incompatibilities between them can
be classified using four criteria as described in Table 1; the extra
column “AlS on DDS” is discussed afterwards.

The industrial prototype solution introduces an intermediate
DDS-variant of AlS, as indicated in Table 1. Thus the integration
is performed in two steps:

1. Adapter from AIS receiver to AIS on DDS: this adapter mainly
deals with technicalities and low-level data conversions.

2. Adapter from AIS on DDS to the core system: this adapter deals
with the main semantic differences in the domain concepts.

Both adapters were developed manually, and directly in terms of a
general-purpose programming language. We have considered both
adapters in isolation, and also their combination in a single adapter.

We focus on the adapter from AIS on DDS to the core system.
This adapter achieves the following behaviour (details omitted).
Once an AlS point message is received, all the three topics intel, sys-
tem, and local are queried and afterwards updated or created. Once
an AlS voyage message is received, the topic intel is queried and
afterwards updated or created; the two topics system and local
are also queried, and local is updated if already available.

Table 1
Case study: Overview of incompatibilities.

AlIS receiver AIS on DDS Core system
Protocol (concrete) TCP/IP DDS DDS
Protocol (abstract) Streaming Publish/subscribe Publish/subscribe
Data (abstract) AIS messages AlS messages Custom model
Data (concrete) NMEA Records Records

Download English Version:

https://daneshyari.com/en/article/550344

Download Persian Version:

hitps://daneshyari.com/article/550344

Daneshyari.com

https://daneshyari.com/en/article/550344
https://daneshyari.com/article/550344
https://daneshyari.com

