
A visual token-based formalization of BPMN 2.0 based on in-place transformations

Pieter Van Gorp ⇑, Remco Dijkman
Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands

a r t i c l e i n f o

Article history:
Received 20 December 2011
Received in revised form 29 August 2012
Accepted 31 August 2012
Available online 15 September 2012

Keywords:
BPMN
BPM
MDA
Formal semantics
Graph transformation

a b s t r a c t

Context: The Business Process Model and Notation (BPMN) standard informally defines a precise execu-
tion semantics. It defines how process instances should be updated in a model during execution. Existing
formalizations of the standard are incomplete and rely on mappings to other languages.
Objective: This paper provides a BPMN 2.0 semantics formalization that is more complete and intuitive
than existing formalizations.
Method: The formalization consists of in-place graph transformation rules that are documented visually
using BPMN syntax. In-place transformations update models directly and do not require mappings to
other languages. We have used a mature tool and test-suite to develop a reference implementation of
all rules.
Results: Our formalization is a promising complement to the standard, in particular because all rules have
been extensively verified and because conceptual validation is facilitated (the informal semantics also
describes in-place updates).
Conclusion: Since our formalization has already revealed problems with the standard and since the BPMN
is still evolving, the maintainers of the standard can benefit from our results. Moreover, tool vendors can
use our formalization and reference implementation for verifying conformance to the standard.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Business Process Model and Notation (BPMN) version 2.0
[41] is a standard notation for business process modeling. It pre-
sents a set of concepts and notational elements for business pro-
cess modeling. It also presents an execution semantics that
defines precisely how models in the BPMN notation should behave
when executed in a tool. That semantics is defined informally using
natural language.

There exist various initiatives to define a formal execution
semantics in addition to the informal one [62,63,10,45,46,12,56].
These formal semantics are defined for a wide variety of reasons,
including: enabling formal reasoning about the correctness of
BPMN 2.0 process models, enabling simulation of those models
and reasoning about the correctness of the standard. All of these
formalizations rely however on a mapping (i.e., an out-of-place
transformation [35]) of BPMN elements to elements in another for-
malism (such as Petri nets). This paper presents a formalization
using visual, in-place [35], transformation rules. Defining the exe-
cution semantics using in-place transformation rules has three
important benefits.

Fistly, the approach is intuitive since graph transformation rules
can be defined by using the BPMN 2.0 notation itself.

Secondly, the approach is simple since there is good traceability
between the informal execution semantics rules in the standard
and their formal counterparts in a graph transformation form. This
facilitates easy validation of the correctness of each of the formal
rules. The traceability exists because the informal semantics in
the standard is also defined in terms of a token-game. It implicitly
relies on rules that specify when a certain notational element can
be (de-)activated and what happens when it does. This can be
mapped easily to a graph transformation rule, which always have
a ‘‘match’’ part and a ‘‘rewrite’’ part. We have designed our rule
set such that each notational element has two rules: one for acti-
vating the element and one for disabling the element. Regardless
of the rule representation syntax (formal or informal, textual or vi-
sual), this consistent design already reduces complexity since the
semantics of different elements can be considered in isolation.

Finally, using graph transformation rules allows the formaliza-
tion to be complete. Theoretically, it is possible to develop a com-
plete execution semantics of BPMN 2.0 in terms of graph
transformation rules, because graph transformation is Turing com-
plete [21]. This as opposed to, for example, classical Petri nets, in
terms of which some constructs are notoriously hard to represent
[10]. As a proof of this concept, our execution semantics covers
more rules from the BPMN 2.0 standard than any other formal
semantics so far.

0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2012.08.014

⇑ Corresponding author. Tel.: +31 40 2472062; fax: +31 40 2432612.
E-mail addresses: p.m.e.v.gorp@tue.nl (P. Van Gorp), r.m.dijkman@tue.nl

(R. Dijkman).

Information and Software Technology 55 (2013) 365–394

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2012.08.014
mailto:p.m.e.v.gorp@tue.nl
mailto:r.m.dijkman@tue.nl
http://dx.doi.org/10.1016/j.infsof.2012.08.014
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

There exists a wide variety of graph transformation tools that
can execute graph transformation rules. Therefore, our execution
semantics in terms of graph transformation rules can be verified
on a test-suite of complex BPMN models. This has already enabled
us to verify the expected behavior of our formalization. Moreover,
we have discovered various points for improvement for the BPMN
standard and this paper enables others to extend this work.

We therefore recommend the maintainers of the standard to (1)
validate whether our formalization matches their intentions, (2) to
use our supportive prototype as an instrument to improve the
informal text in the standard and (3) to include an appendix based
on our visual, rule-based formalization. This should lead to a better
conformance to the standard and a better adoption of language
constructs (especially non-trivial ones such as compensation
events).

The remainder of this paper is structured as follows. Section 2
provides an introduction to graph transformation and BPMN 2.0.
Section 3 defines the BPMN 2.0 execution semantics formally using
graph transformation rules. Section 4 explains how we have con-
structed a reference implementation, how that implementation
can be used and which alternatives we consider promising. Finally,
Section 5 presents the evaluation of our contribution, Section 6
presents related work and Section 7 concludes.

2. Preliminaries

Before elaborating on the challenging topic of BPMN 2.0 seman-
tics definition, Section 2.1 provides a gentle introduction to the
BPMN. Section 2.2 then demonstrates our rule-based approach to
semantics formalization on a language with a notoriously more
simple semantics than the BPMN. That section serves as a ‘‘hello
world’’ teaser to the next sections, which are more technically de-
tailed. Section 2.3 provides a systematic introduction to typed
attributed graphs and graph transformation. Finally, Section 2.4
introduces techniques for composing primitive rules into more
powerful units.

2.1. BPMN 2.0

BPMN 2.0 can be used to create models of an organization’s
business processes. To this end, it defines a large number of nota-
tional elements, the meaning of those elements and an execution
semantics that defines how certain combinations of elements
should behave.

Fig. 1 shows a simple BPMN model of an order handling process.
The model starts with a start event, represented by a circle, that is
triggered when a message, represented by the envelope icon,
arrives. The message contains an order. After the order arrives,
the organization starts to process the order in a subprocess,
represented by a rounded rectangle that contains other elements.
The subprocess contains two activities, represented by rounded

rectangles, and can be interrupted when a cancelation (repre-
sented by the cross symbol attached to the subprocess) about the
order is received. After either the subprocess completes or an order
cancelation is received, the alternative paths are joined by a so-
called exclusive gateway, represented by the diamond with the
‘‘X’’. Finally, the process reaches an end event, representing
completion.

The elements shown in Fig. 1 can be interpreted as a graph: the
start event, end event, subprocess element, its contained activities,
its attached message event and finally the exclusive gateway are
the nodes of the graph while the flow arcs shown in Fig. 1 are its
edges. Finally, for representing the hierarchical relation between
the subprocess node and its children we can also assume the pres-
ence of a specificly typed edge between these elements.

The execution semantics of BPMN 2.0 is defined in terms of a
large number of execution semantics rules. One of these rules,
for example, states that the behavior of an exclusive gateway is
such that: ‘‘Each token arriving at any incoming Sequence Flows acti-
vates the gateway’’. We will introduce the graph-based formaliza-
tion of this rule very gently in Section 2.3 but already
demonstrate its expected behavior by means of Fig. 2. Note that
the BPMN standard provides no standard icon for representing to-
kens, which makes it impossible to visualize process executions in
standard syntax. We represent tokens as black dots, inspired by
other flow-based languages such as classical Petri nets. Also note
that Fig. 2 shows one process state per numbered item (1–14).
Such a state consists of all process elements, all tokens, and all pro-
cess instances to which these tokens belong. Again, inspired by
Petri nets, we refer to these states as Markings and to the overall
graph in Fig. 2 as a statespace.

Fig. 2 shows all possible executions of the order handling pro-
cess (cfr., Fig. 1). The rule for executing exclusive gateways is trig-
gered for transitioning from state 6 to 7 as well as from state 11 to
12. Clearly, for these transitions, the aforementioned behavior is
satisfied. Note that the formal semantics from this paper enables
the execution of BPMN models even when no guard expressions
have been specified by the business analyst: all choices can be
made non-deterministically or based on additional user input dur-
ing process execution. We argue that this is quite valuable espe-
cially for business analysts, who are typically not trained in
guard expression specification languages. For example when
designing the process models from Fig. 1, the analyst may find it
useful to double-check that regardless of arc inscription details
there are two ways to complete the process and that in both final
states (markings 9 and 14 from Fig. 2) there is exactly one token in
the end event.

The figure also illustrates that upon order cancelation, tokens
are removed from the subprocess elements as well as from the
subprocess activity (cfr., the three transitions leading to state 10).
Finally, note that although they are identical visually, state 7 is dif-
ferent from state 12 (and 8 from 13 and 9 from 14 respectively).
More specifically, the state of the subprocess is ‘‘completed’’ for

Fig. 1. Example BPMN 2.0 model: processing orders.

366 P. Van Gorp, R. Dijkman / Information and Software Technology 55 (2013) 365–394

Download	English	Version:

https://daneshyari.com/en/article/550345

Download	Persian	Version:

https://daneshyari.com/article/550345

Daneshyari.com

https://daneshyari.com/en/article/550345
https://daneshyari.com/article/550345
https://daneshyari.com/

