
Evaluating prediction systems in software project estimation

Martin Shepperd a,⇑, Steve MacDonell b

a Dept. of IS & Computing, Brunel University, Uxbridge, UB83PH, UK
b Dept. of Computing and Mathematical Sciences, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand

a r t i c l e i n f o

Article history:
Available online 25 January 2012

Keywords:
Software engineering
Prediction system
Empirical validation
Randomisation techniques

a b s t r a c t

Context: Software engineering has a problem in that when we empirically evaluate competing prediction
systems we obtain conflicting results.
Objective: To reduce the inconsistency amongst validation study results and provide a more formal foun-
dation to interpret results with a particular focus on continuous prediction systems.
Method: A new framework is proposed for evaluating competing prediction systems based upon (1) an
unbiased statistic, Standardised Accuracy, (2) testing the result likelihood relative to the baseline tech-
nique of random ‘predictions’, that is guessing, and (3) calculation of effect sizes.
Results: Previously published empirical evaluations of prediction systems are re-examined and the origi-
nal conclusions shown to be unsafe. Additionally, even the strongest results are shown to have no more
than a medium effect size relative to random guessing.
Conclusions: Biased accuracy statistics such as MMRE are deprecated. By contrast this new empirical val-
idation framework leads to meaningful results. Such steps will assist in performing future meta-analyses
and in providing more robust and usable recommendations to practitioners.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Being able to predict is a hallmark of any meaningful engineer-
ing discipline and software engineering is no exception. Research-
ers have been exploring prediction systems1 for areas such as cost,
schedule and defect-proneness for more than 40 years. And whilst
considerable sophistication and ingenuity has been brought to bear
on the construction of such systems, empirical evaluation has not
led to consistent or easy to interpret results. This matters because
it is hard to know what advice to offer practitioners who are — or
who ought to be — the major beneficiaries of software engineering
research.

There has been an enormous growth in interest and empirical
research into building prediction systems in software engineering.
Many different techniques have been proposed e.g. statistical
methods including regression analysis, instance-based learners
including case-based reasoners, Bayesian classifiers, support vector
machines and ensembles of learners. For an overview see the 2007

mapping study by Jørgensen and Shepperd [16] which identified
more than 300 journal papers that examined cost or effort
prediction (and this number has continued to grow and, of course,
excludes conference publications). Other topics such as defect
prediction have generated as much, if not more, attention. It is
self-evident that there is a large body of research work.

Given that there are many competing prediction techniques
many researchers have set about empirically comparing their per-
formance on different data sets. Unfortunately, not only does no
single prediction technique dominate, but there are many contra-
dictory results [34]. To help make more sense of these varied
results there has been a recent move to pooling results through
systematic reviews and meta-analyses. However, we still tend to
find inconclusive results from systematic reviews (or meta-analy-
ses) [19]. Three such examples of inconsistent systematic review
findings are:

� Jørgensen [13] reviewed 15 studies comparing model-based
to expert-based estimation. Five of those studies found in
favour of expert-based methods, five found no difference,
and five found in favour of model-based estimation.

� Mair and Shepperd [25] compared regression to analogy
methods for effort estimation and similarly found conflicting
evidence. From a total of 20 empirical studies, seven favoured
regression, four were indifferent and nine favoured analogy.

� Kitchenham et al. [21] found seven relevant empirical studies
for the question is it better to predict using local, as opposed

0950-5849/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2011.12.008

⇑ Corresponding author.
E-mail address: martin.shepperd@brunel.ac.uk (M. Shepperd).

1 By a prediction system we mean some f(xi) to estimate the variable yi where xi is
an input vector that describes characteristics of the target i. It need not be formal in
the sense of being defined by explicit rules so estimation by humans might be
included in this definition. Nor need such systems be deterministic, however, it is
required that a prediction system utilises information contained within xi and this
distinguishes it from guessing at random. In other words prediction systems must, by
definition, perform better than random.

Information and Software Technology 54 (2012) 820–827

Contents lists available at SciVerse ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2011.12.008
mailto:martin.shepperd@brunel.ac.uk
http://dx.doi.org/10.1016/j.infsof.2011.12.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


to cross-company, data. Three studies reported it made no
significant difference, whilst four found it was better.

In order to make progress in our research software engineers
need to explore the underlying reasons for these inconsistencies
and how this unwelcome situation might be resolved. This is extre-
mely important as otherwise it is difficult to make safe recommen-
dations to practitioners. However, I do wish to stress the purpose
of this paper is to consider how best to compare competing predic-
tion systems, not to argue in favour of any particular prediction
technique.

The remainder of this paper is organised as follows. The next
section describes a formal framework to provide a context within
which to analyse empirical results. I show how randomisation
techniques can provide a baseline for interpreting individual pri-
mary studies. This serves two purposes. First it can determine
the likelihood of a reported level of accuracy not being due to
chance. Second, it can be used as an input to calculate the effect
size of any change in accuracy relative to chance. Section 3 uses
three published, refereed studies [35,36,18] as examples to show
how the framework enables unsafe conclusions to be uncovered.
These three studies are not intended as a random sample, but
rather they are chosen to illustrate that validation problems exist
in empirical software engineering and how they may be remedied.
In the Discussion Section we conclude that this framework for
empirical evaluation of prediction systems provides a basis for rig-
orous appraisal of results and their significance plus a means of
visually combining and interpreting multiple results.

2. A validation framework

In this paper the discussion is restricted to predicting some con-
tinuous2 output that is denoted Y. However, in principle the argu-
ments also apply to classifiers, that is prediction systems where
the output is categorical e.g. the module does or does not contain de-
fects. The reason for this distinction is that for accuracy assessment
continuous prediction systems deal with residuals [30] whilst classi-
fiers deal with confusion matrices [8].

In order to bring some generality to our discussion and to avoid
becoming bogged down with the minutiae of individual studies we
propose the following framework. Researchers validate some pre-
diction system Pi over a data set D using some accuracy statistic
S according to a validation scheme V. Empirical evaluation can be
seen as an attempt to establish an order (or partial order) from bin-
ary preference relations such as P1 � P2 over the set P of candidate
prediction systems. The preference relation may be read as P2 is
preferred to P1 or P1 is less preferable than P2. It is also useful to
combine an indifference relation � with a preference relation so
one might re-express the previous relation as a non-strict order,
thus P1 ^ P2 denotes that P2 is not worse than P1 (for a more
detailed overview see Davey and Priestley [6]).

The validation scheme V, irrespective of the specific choice of
accuracy statistic, can be thought of as an estimator3 of S. In
other words, bS is the best guess of the population or true (but
generally unknowable) value of S. It is an estimate because, usu-
ally it is not practical to try out a prediction system on all soft-
ware projects, moreover in practice we are most concerned with
predicting future projects. Therefore researchers need to simulate
how the prediction system would behave when dealing with
new unseen cases by ‘‘holding out’’ some cases within D to test
its ability to predict.

The estimator uses rules such as a leave-one out scheme or an
m � n cross-validation. For a discussion and empirical analysis of
cross-validation see Kohavi [22]. Although this might seem rather
arcane, a study by Song et al. [37] illustrates how important using
an unbiased estimator is. They reveal that a previous study re-
ported defect prediction system accuracy results that were the re-
verse of those obtained when a better validation scheme (one that
preserved the integrity of the hold-out sample) was deployed.

More problematic is how we interpret the meaning of the data
set D used for validation. Although this is not the usual stance of
researchers, it must be seen as a sample drawn from some under-
lying population over which we wish to say something about S.
Clearly our data sets are not random samples since this would im-
ply that all projects have an equal chance of being drawn. Another
difficulty is the tendency of researchers to avoid making any expli-
cit statement about the population under consideration. Does the
researcher mean all software projects? All large projects? All
non-student projects? This is an area that needs urgent attention.

When establishing these preference relations researchers need
to be concerned with three fundamental questions. For a given
accuracy statistic S and candidate prediction systems P1 and P2

one must ask:

1. Does the prediction system Pi outperform a baseline of ran-
dom guessing, a special case of a prediction system denoted
P0, that is does P0 � Pi? If the answer is not yes then it cannot
even be claimed that Pi is predicting at all since it does worse
than random.

2. Is the difference P1 � P2 statistically significant for some pre-
determined value of a? In other words how likely is any
observed effect to have occurred by chance?

3. Is the effect size large enough to justify P1 � P2 in practice? It
may be that any improvement that P2 offers is so inconse-
quential as to not be worth the effort hence P1 ^ P2 or in
other words despite the potential additional effort and
sophistication all that can be asserted is P2 is not worse than
an existing P1.

2.1. Baselines

Generally the notion of some fundamental baseline or bench-
mark has been absent from validation studies of prediction sys-
tems, which is not to say researchers have not made
comparisons between competing approaches. However, the inter-
pretation depends upon the choice of approaches which is gener-
ally ad hoc.

Examples of studies that have employed a baseline are Jørgen-
sen [12] who used sample mean productivity multiplied by esti-
mated size as a fairly simple benchmark to compare the
performance of ten other software maintenance effort prediction
systems. Interestingly this baseline approach did not always per-
form worst. However, it still makes some assumptions about mea-
suring size and productivity so it is more a competing prediction
system than a fundamental baseline. Another example is, Mendes
and Kitchenham [29] who use the sample median as a benchmark
for their analysis. Likewise Bi and Bennett [1] suggest the use of the
sample mean as the baseline for their proposed anologue of the
ROC curve, namely a regression error characteristic curve.

A more naı̈ve and general approach is simply to randomly as-
sign the y value of another case to the target case. This is a form
of permutation and has the advantage of not requiring any param-
eter estimates. We refer to this as random guessing. Any prediction
system should outperform random guessing over time; to do other-
wise calls into question the systematic nature of the prediction
system. An inability to predict better than random implies the

2 Strictly speaking we also include the absolute scalar type i.e. counting.
3 An estimator is a statistical procedure for estimating some population parameter

from a sample.

M. Shepperd, S. MacDonell / Information and Software Technology 54 (2012) 820–827 821



Download English Version:

https://daneshyari.com/en/article/550377

Download Persian Version:

https://daneshyari.com/article/550377

Daneshyari.com

https://daneshyari.com/en/article/550377
https://daneshyari.com/article/550377
https://daneshyari.com

