FISEVIER

Contents lists available at ScienceDirect

Parkinsonism and Related Disorders

journal homepage: www.elsevier.com/locate/parkreldis

ADCY5-related movement disorders: Frequency, disease course and phenotypic variability in a cohort of paediatric patients

Miryam Carecchio ^{a, b, c, 1}, Niccolò E. Mencacci ^{d, e, *, 1}, Alessandro Iodice ^f, Roser Pons ^g, Celeste Panteghini ^a, Giovanna Zorzi ^b, Federica Zibordi ^b, Anastasios Bonakis ^h, Argyris Dinopoulos ⁱ, Joseph Jankovic ^j, Leonidas Stefanis ^h, Kailash P. Bhatia ^k, Valentina Monti ^a, Lea R'Bibo ^d, Liana Veneziano ^l, Barbara Garavaglia ^a, Carlo Fusco ^f, Nicholas Wood ^d, Maria Stamelou ^{m, h, 2}, Nardo Nardocci ^{b, 2}

- ^a Molecular Neurogenetics Unit, IRCCS Foundation Neurological Institute C. Besta, Via L. Temolo 4, 20126 Milan, Italy
- ^b Department of Pediatric Neurology, IRCCS Foundation Neurological Institute C. Besta, Via Celoria 11, 20133 Milan, Italy
- ^c Department of Medicine and Surgery, PhD Programme in Molecular and Translational Medicine, University of Milan Bicocca, Via Cadore 48, 20900 Monza, Italy
- ^d Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United Kingdom
- ^e Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, 60611 Illinois, USA
- f Child Neurology and Psychiatry Unit, Department of Pediatrics, IRCCS Santa Maria Nuova Hospital, Viale Risorgimento 80, 42123 Reggio nell'Emilia, Italy
- g First Pediatric Clinic, University of Athens, Agia Sofia Children's Hospital, Thivon and Levadias, 11527 Athens, Greece
- h Second Department of Neurology, Attiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- ¹ Third Department of Paediatrics, Attiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Athens, Greece
- ^j Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, 7200 Cambridge, Houston, TX 77030-4202, USA
- ^k Sobell Department of Motor Neuroscience and Movement Disorders, University College London, Institute of Neurology, London WC1N 3BG, United Kingdom
- ¹ Institute of Translational Pharmacology, National Research Council, Via Fosso del Cavaliere, 100, 00133 Rome, Italy
- ^m Movement Disorders Department, HYGEIA Hospital, Athens, Greece

ARTICLE INFO

Article history: Received 9 March 2017 Received in revised form 27 April 2017 Accepted 8 May 2017

Keywords: ADCY5 Chorea Dystonia Myoclonus Dyskinesia

ABSTRACT

Introduction: ADCY5 mutations have been recently identified as an important cause of early-onset hyperkinetic movement disorders. The phenotypic spectrum associated with mutations in this gene is expanding. However, the ADCY5 mutational frequency in cohorts of paediatric patients with hyperkinetic movement disorders has not been evaluated.

Methods: We performed a screening of the entire *ADCY5* coding sequence in 44 unrelated subjects with genetically undiagnosed childhood-onset hyperkinetic movement disorders, featuring chorea alone or in combination with myoclonus and dystonia. All patients had normal CSF analysis and brain imaging and were regularly followed-up in tertiary centers for paediatric movement disorders.

Results: We identified five unrelated subjects with ADCY5 mutations (11% of the cohort). Three carried the p. R418W mutation, one the p. R418Q and one the p. R418G mutation. Mutations arose de novo in four cases, while one patient inherited the mutation from his similarly affected father. All patients had delayed motor and/or language milestones with or without axial hypotonia and showed generalized chorea and dystonia, with prominent myoclonic jerks in one case. Episodic exacerbations of the baseline movement disorder were observed in most cases, being the first disease manifestation in two patients. The disease course was variable, from stability to spontaneous improvement during adolescence.

Conclusion: Mutations in ADCY5 are responsible for a hyperkinetic movement disorder that can be preceded by episodic attacks before the movement disorder becomes persistent and is frequently

^{*} Corresponding author. Department of Molecular Neuroscience, UCL Institute of Neurology, WC1N 3BG London, United Kingdom. E-mail address: niccolo.mencacci@northwestern.edu (N.E. Mencacci).

These authors contributed equally to this manuscript.

² These authors contributed equally to this manuscript.

misdiagnosed as dyskinetic cerebral palsy. A residual degree of neck hypotonia and a myopathy-like facial appearance are frequently observed in patients with *ADCY5* mutations.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Adenyl cyclase 5, encoded by *ADCY5*, is a striatal-specific enzyme that converts adenosine triphosphate (ATP) into cyclic adenosine monophosphate (cAMP), an intracellular second messenger crucial for several molecular pathways [1].

The role of pathogenic mutations in ADCY5 was first recognized in 2012, when a segregating missense change in the gene was discovered in a large dominant kindred with multiple affected members presenting with an early-onset hyperkinetic movement disorder named Familial Dyskinesia with Facial Myokymia (FDFM; OMIM 600293) [1,2]. A second de novo mutation (p.R418W) in ADCY5 was subsequently found in two unrelated patients presenting with childhood-onset chorea and dystonia [3] and mutation-positive subjects were also found in a cohort of patients with a clinical diagnosis of benign hereditary chorea (BHC) but no NKX2-1 mutations [4]. The clinical phenotype associated with ADCY5 mutations includes in most cases childhood-onset chorea with episodic exacerbations observed more frequently upon awakening, when falling asleep or during intercurrent illnesses [5–8]. Besides chorea, various hyperkinetic movement disorders such as myoclonus and dystonia have been described in ADCY5 positive subjects, but the prevalence of ADCY5 mutations in such patients is unknown.

The aim of this study was to establish the contribution of *ADCY5* mutations in a multi-centric cohort of patients with early-onset hyperkinetic movement disorder who lacked a definite genetic diagnosis.

We identified six new European cases with pathogenic *ADCY5* mutations belonging to five different families, showing the clinical course of disease at different ages, phenotypic heterogeneity and variability of movement disorder.

2. Materials and methods

In this study, we included patients displaying paediatric onset hyperkinetic movement disorder featuring chorea alone or in combination with myoclonus and dystonia, including patients diagnosed with dyskinetic cerebral palsy (CP). Patients with secondary movement disorders, such as documented hypoxic injury at birth or with detectable structural brain lesions were not included. Patients enrolled had previously undergone extensive metabolic screening (plasma and urinary aminoacids and organic acids, lactate/pyruvate, cerebrospinal fluid analysis including neurotransmitters and biopterins dosage) and multiple MRI brain scans that were unrevealing. Mutations in the *NKX2-1* gene, a significant though rare cause of childhood-onset chorea, were excluded in all of these patients [9].

44 unrelated patients were included from five different European Centers (IRCCS C. Besta Neurological Institute, Milan; IRCCS Santa Maria Nuova Hospital, Reggio Emilia; Movement Disorders Department, HYGEIA Hospital, Athens; Second Department of Neurology, Attikon Hospital, University of Athens; First Paediatric Clinic, University of Athens, Agia Sofia Hospital, Athens). Details on clinical history were obtained by direct interviewing the patients and their relatives; in some cases, home-made videos were retrieved and reviewed by the authors to better define the clinical

phenotype at earlier disease stages.

After obtaining informed consent (parental consent for minors where applicable), patients were blood sampled and DNA was extracted from peripheral blood lymphocytes according to standard procedures. *ADCY5* exons 2 and 10, in which mutations have been identified in most of the families published to date, were Sanger sequenced. Samples without mutations in these two exons were submitted for Whole Exome Sequencing (WES), which was performed as previously reported [10]. Segregation analysis in available family members was performed in all positive cases.

3. Results

Five out of 44 unrelated patients (11%) carried *ADCY5* mutations. Four patients were sporadic and carried *de novo* changes, while one had an autosomal dominant family history and inherited the mutation from his 47-year-old father, who also suffered from childhood-onset generalized chorea and dystonia. All mutations detected were located in *ADCY5* exon 2, at amino acidic residue 418 (p.R418W in 3 patients, p. R418G and p. R418Q in one each). Analysis of WES data did not reveal any additional mutation in *ADCY5* located outside exons 2 and 10 in the remainder 39 patients.

Clinical features of positive patients are summarized in Table 1. **Patient 1** (p.R418W; *de novo* mutation) is a 15-year-old girl born pre-term from healthy parents. She presented with axial hypotonia (Video 1 - Segment 1) and delayed language. Around 11 months she developed abrupt brief generalized dystonic attacks when falling asleep. Between age 1 and 2, generalized chorea also appeared during attacks, that occurred in clusters on a weekly basis. Around 18 months of age she developed generalized chorea with a slowly progressive course until age 13 (Video 1 - Segment 2), and subsequent spontaneous improvement; at age 9 she developed left foot dystonia (in-turning). Due to chorea and severe axial hypotonia she could walk independently only at age 5; residual neck hypotonia is still present to date. Routine EEG and sleep studies did not show cortical correlates of movement disorder and brain MRI was unremarkable. She initially received a diagnosis of dyskinetic CP. On examination at age 15 (Video 1 - Segment 3), her mouth was slightly open, she showed generalized chorea involving also perioral muscles, dystonic posturing of upper and lower limbs, head drop and severe dysarthria with saliva drooling. Her total IQ (84) was in the borderline range (WISC). During teen age, episodic exacerbations of chorea and dystonia during sleep became shorter and less frequent and are now present about once a month. Episodic exacerbations also occur during the day with two distinct patterns: 1) sudden give-way of legs with falls to the ground with preserved consciousness and 2) generalized dystonic-choreic attacks favored by tiredness and narrow passages. Trihexyphenidyl up to 32 mg/day did not improve significantly motor symptoms.

Supplementary video related to this article can be found at http://dx.doi.org/10.1016/j.parkreldis.2017.05.004.

Patient 2 (p.R418Q; *de novo* mutation) is an Italian 18-year-old boy born from healthy parents. He presented with delayed motor milestones and a tendency to tiptoe walking at 18 months. Since 6 months of age, nocturnal attacks of generalized dystonia with inconsolable crying, lasting up to some hours, disrupted his sleep. During infancy he developed generalized chorea and mild

Download English Version:

https://daneshyari.com/en/article/5503771

Download Persian Version:

https://daneshyari.com/article/5503771

Daneshyari.com