
Specifying aspect-oriented architectures in AO-ADL

Mónica Pinto ⇑, Lidia Fuentes, José María Troya
Dpto. de Lenguajes y Ciencias de la Computación, University of Málaga, Campus de Teatinos, s/n, E29071 Málaga, Spain

a r t i c l e i n f o

Article history:
Received 21 July 2010
Received in revised form 17 March 2011
Accepted 15 April 2011
Available online 23 April 2011

Keywords:
Software Engineering
Software Architectures
Languages
Aspect-Oriented Software Development
Metrics

a b s t r a c t

Context: Architecture description languages (ADLs) are a well-accepted approach to software architec-
ture representation. The majority of well-known ADLs are defined by means of components and connec-
tors. Architectural connectors are mainly used to model interactions among components, specifying
component communication and coordination separately. However, there are other properties that cut
across several components and also affect component interactions (e.g. security).
Objective: It seems reasonable therefore to model how such crosscutting properties affect component
interactions as part of connectors.
Method: Using an aspect-oriented approach, the AO-ADL architecture description language extends the
classical connector semantics with enough expressiveness to model the influences of such crosscutting
properties on component interactions (defined as ‘aspectual compositions’ in connectors).
Results: This paper describes the AO-ADL language putting special emphasis on the extended connectors
used to specify aspectual and non-aspectual compositions between concrete components. The contribu-
tions of AO-ADL are validated using concern-oriented metrics available in the literature.
Conclusion: The measured indicators show that using AO-ADL it is possible to specify more reusable and
scalable software architectures.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Software architecture can be considered quite a mature disci-
pline, which focuses on a high-level representation of the software
system structure. Software architecture helps developers to think
about a system’s complexity, in order to obtain the architectural
configuration that facilitates the best possible evolution and main-
tenance management of the final system [1]. Because of this, recent
approaches in software engineering consider the description of the
software architecture as an important part of the software devel-
opment life cycle. Architecture Description Languages (ADLs) were
proposed to represent the software architecture of a system, pro-
viding precise descriptions of the constituent computational com-
ponents and of their interactions [2]. A detailed discussion of the
benefits of using ADLs can be found in [3]. Due to the benefits of
describing the software architecture in the early stages of the soft-
ware life cycle, a large number of ADLs have been proposed [3].
These languages usually describe the software architecture of a
system in terms of components and connectors. Components encap-
sulate computation and connectors represent patterns of commu-
nication and interactions between components.

This separation of concerns between computation and commu-
nication helps to increase the reuse of software artifacts. However,
some other concerns (e.g. security, persistence and synchroniza-
tion) normally crosscut several components, also affecting compo-
nent interactions. These crosscutting concerns cannot be easily
located using traditional ADLs, either inside individual components
or in connectors (none of the ADLs described in [3,4] provide expli-
cit support to separate crosscutting concerns). For example, persis-
tence is a crosscutting concern that deals with recording the state
of different software components in a database. Using traditional
ADLs, the interaction between persistent components and the
database will be scattered among the different component inter-
faces, and tangled with the components base functionality. This
scattered and tangled behavior frequently results in poor architec-
ture descriptions with highly coupled components, preventing
reusability and evolution management of the affected components.
Recently several empirical studies reveal that crosscutting con-
cerns degrade system quality because they negatively impact
internal quality metrics such as coupling, separation of concerns,
defects or reusability [5].

Coping with scattering and tangling of crosscutting concern
problems is the main goal of Aspect-Oriented Software Develop-
ment (AOSD)1 modeling crosscutting concerns as ‘aspects’. AOSD
promotes the principle of separation of concerns throughout all

0950-5849/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2011.04.003

⇑ Corresponding author. Tel.: +34 952132796; fax: +34 952131397.
E-mail addresses: pinto@lcc.uma.es (M. Pinto), lff@lcc.uma.es (L. Fuentes),

troya@lcc.uma.es (J.M. Troya). 1 http://www.aosd.net.

Information and Software Technology 53 (2011) 1165–1182

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2011.04.003
mailto:pinto@lcc.uma.es
mailto:lff@lcc.uma.es
mailto:troya@lcc.uma.es
http://www.aosd.net
http://dx.doi.org/10.1016/j.infsof.2011.04.003
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


the phases of the software life cycle, including software architecture
design (Aspect-Oriented Architectural Design, AOAD). In [6] a quan-
titative comparison of aspect-oriented (AO) and traditional architec-
tures is presented, revealing that an AO architecture normally
improves separation of concerns and component cohesion, enhanc-
ing the evolution management of the system. On the other hand,
since crosscutting concerns are normally hard to find, understand
and work with, separating and specifying them at the architectural
level will provide a means of understanding how to make changes
to system concerns (update/add/remove concerns) correctly and
consistently before moving to implementation. Despite the need
for and benefits from specifying and documenting crosscutting con-
cerns, there is a notable lack of support for them in existing ADLs
(none of the ADLs described in [3,4] provide explicit support to spec-
ify and document crosscutting concerns).

In this paper we present AO-ADL, an aspect-oriented ADL (AO
ADL) based on XML. The goal of AO-ADL is to provide a language
support flexible enough to separate and inject crosscutting con-
cerns in a non-intrusive way at the architectural level. Following
a symmetric approach, AO-ADL models crosscutting concerns (i.e.
aspectual components in AOAD terminology) using the classical
component. So, components model both crosscutting and non-
crosscutting concerns (i.e. base components in AOAD terminology).
As crosscutting concerns influence base component interactions, it
seems reasonable to model their composition with base compo-
nents as part of connectors. AO-ADL extends the classical connec-
tor semantics with enough expressiveness to model the influence
of crosscutting concerns on component interactions by means of
aspectual compositions. Aspectual compositions in AOAD terminol-
ogy is defined as the weaving between base and aspectual compo-
nents at architectural level. In order to preserve the building blocks
that define the architectural structure in classical ADLs, connectors
in AO-ADL encapsulate any kind of component interaction, either
aspectual or non-aspectual, in a homogenous way. This facilitates
the understanding of how a set of aspectual components affect a
given interaction between base components.

So, with AO-ADL it is possible to retain base structural proper-
ties of architectural models while at the same time being able to
insert ‘‘aspects’’ into the model simply by modifying or adding
new connectors. The resulting architectural description will be
more cohesive and less coupled, since base components do not
contain any reference to aspectual components, which only encap-
sulate one concern. This means that the evolution and mainte-
nance management is greatly improved since crosscutting
concerns are localized in separate modules and their composition
is defined separately inside connectors. This will have a positive
impact on several qualities of the software system as shown in this
paper (e.g. evolvability, traceability, composability and reusabil-
ity2). Finally, describing AO-ADL architectural specifications is sup-
ported by a toolkit that facilitates the work of software architects,
being also part of an AO integrated development environment (IDE).3

The organization of the rest of the paper is as follows. The fol-
lowing section presents the AOSD background, firstly describing
AO architectural design concepts and, secondly, providing a de-
tailed discussion about the shortcommings of current AO ADLs.
Then, the case study used to illustrate AO-ADL concepts and the
main features of the language are presented in Section 3. Since
the main building blocks of AO-ADL are components and connec-
tors we dedicate a section to each of them in Sections 4 and 5.
Then, in Section 6 we describe the AO-ADL Tool Suite that supports
the specification of AO-ADL descriptions, and outline how these

tools are integrated in a development methodology. As a proof
osf concept, in Section 7 we validate our approach by presenting
how specifying software architectures in AO-ADL may have a posi-
tive impact on several qualities, enhancing the system evolution
management. Finally, in Section 8 we present our conclusions
and further work.

2. Related work on aspect-oriented architecture design

In this section we first describe common AOSD terminology,
specific to the architectural-level. Secondly, we provide an over-
view of existing aspect-oriented ADLs.

2.1. Aspect-oriented architectural design

AOSD aims to achieve separation of those concerns that are
scattered among multiple software artifacts, which are known as
crosscutting concerns. The main motivation for using AOSD is the
impossibility of traditional software technologies, like object-ori-
ented programming or component-based software development,
to appropriately modularize crosscutting concerns. AOSD copes
with this limitation by introducing the concept of aspect.

Although AOSD covers all the phases of the software life cycle,
the terminology used at architectural level is strongly influenced
by the one introduced in Aspect-Oriented Programming (AOP)
[7]. As defined in [8], an architectural aspect is a unit for modularis-
ing an otherwise crosscutting concern. Non crosscutting concerns
are considered base components. Inside an architectural aspect,
the advice specifies the operations that will transform (augment
or diminish) the architecture at certain architectural join points.
Architectural join points are well-defined points in the specifica-
tion of the software architecture, where aspect composition takes
place. For each architectural style, a specialized set of join points
can be defined, such as the invocation of services, publishing/sub-
scribing of events, etc. [9]. Usually the aspect behavior (or architec-
tural advice) can be inserted or woven before, after or around a join
point. Architectural pointcuts refer to collections of architectural
join points. An architectural pointcut is an expression that specifies
every place where an aspect behavior is injected.

Nevertheless, defining a new artifact called aspect (or architec-
tural aspect in AOAD) introduces some asymmetry into AO architec-
tures, causing some problems to arise. Asymmetric architectural
models mean that concerns modeled as aspects cannot be (re) used
as standalone architectural components, reducing their reusability
possibilities. Also, this asymmetry prevents the same component
from playing an aspectual or non-aspectual role depending on the
requirements of each system. In order to overcome these limitations,
symmetric models do not distinguish between components and as-
pects (as is defined in [10–12]), but between aspectual or non-aspec-
tual compositions. An aspectual composition specifies the interaction
between base components influenced by other components playing
an aspectual role, according to an architectural pointcut definition.
When a component plays an aspectual role it could also be named
at architectural level an aspectual component.

2.2. AOAD related works

A large number of AO approaches have emerged in recent years
at each level of the software life cycle. A detailed comparison be-
tween the most representative AOAD approaches can be found in
the survey [13]. The results of this survey illustrate that only a
few AO proposals were defined at the architectural level, including
our previous work DAOP-ADL [14]. After this survey was pub-
lished, some new AO ADLs have appeared. In this section we will
compare several AO ADLs and remark on some shortcomings that

2 These properties are defined as qualities of an architectural configuration
description in [3].

3 http://www.aosd-europe.net/ In Research ? Atelier ? IDE Framework ? Tools ?
IDE Tools with Achieved Integration.

1166 M. Pinto et al. / Information and Software Technology 53 (2011) 1165–1182

http://www.aosd-europe.net/


Download	English	Version:

https://daneshyari.com/en/article/550444

Download	Persian	Version:

https://daneshyari.com/article/550444

Daneshyari.com

https://daneshyari.com/en/article/550444
https://daneshyari.com/article/550444
https://daneshyari.com/

