
Identifying refactoring opportunities in process model repositories

Remco Dijkman a,⇑, Beat Gfeller b, Jochen Küster b, Hagen Völzer b

a Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
b IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland

a r t i c l e i n f o

Article history:
Available online 9 April 2011

Keywords:
Business Process Model
Refactoring
Repository

a b s t r a c t

Context: In order to ensure high quality of a process model repository, refactoring operations can be
applied to correct anti-patterns, such as overlap of process models, inconsistent labeling of activities
and overly complex models. However, if a process model collection is created and maintained by different
people over a longer period of time, manual detection of such refactoring opportunities becomes difficult,
simply due to the number of processes in the repository. Consequently, there is a need for techniques to
detect refactoring opportunities automatically.
Objective: This paper proposes a technique for automatically detecting refactoring opportunities.
Method: We developed the technique based on metrics that can be used to measure the consistency of
activity labels as well as the extent to which processes overlap and the type of overlap that they have.
We evaluated it, by applying it to two large process model repositories.
Results: The evaluation shows that the technique can be used to pinpoint the approximate location of
three types of refactoring opportunities with high precision and recall and of one type of refactoring
opportunity with high recall, but low precision.
Conclusion: We conclude that the technique presented in this paper can be used in practice to automat-
ically detect a number of anti-patterns that can be corrected by refactoring.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Today, many organizations maintain repositories that contain
hundreds of business process models. For example, the SAP refer-
ence model [5], the reference model for Dutch local government
[9] and IBM’s insurance architecture (IAA) [15] all contain more
than 250 process models.

To promote a joint understanding of the repository and,
therewith, re-use and maintainability, the processes in the reposi-
tory should be modeled as uniformly as possible. In particular, they
should use the same terms to describe model elements that have
the same meaning and different terms to describe model elements
that have a different meaning. To promote maintainability, overlap
between processes should be avoided; process parts that appear in
multiple business process models should be put into common
subprocesses, such that a change to these parts only has to be
made in one place. To promote uniformity, the models in the
repository should be described at the same level of detail.
Refactoring operations can be applied to the process models in a
repository to fix problems related to terminology, overlap and level
of detail and, therewith, to promote understandability, re-use and

maintainability of the models [33]. By refactoring, we mean an
operation that changes one or more business process models in a
repository, without changing their execution semantics, but
improving their understandability, maintainability or reusability.

Refactoring may not only apply to the process models, but also
to the real-world processes themselves, saving costs by eliminating
redundancies in their implementations.

This paper presents a technique to automatically detect oppor-
tunities for applying refactoring operations to fix problems related
to terminology, overlap and level of detail. For some problems such
as activity naming inconsistencies, simple process matching tech-
niques [1,7] suffice to detect a refactoring opportunity. However,
some refactoring opportunities concern similar process parts, i.e.,
coherent groups of several related nodes. To find similar process
parts, our approach combines process matching techniques with
the Refined Process Structure Tree [32], which can be used to group
related nodes in a computationally efficient manner.

Identifying similar parts of different processes also has value on
its own, without necessarily aiming at refactoring. For example, it
can refine the search for similar processes, which is used, e.g., to
find re-usable assets that are associated with a similar process,
such as a software application or an expert in a role associated with
that process. There may be no pair of processes that are similar
overall, but there may be processes that have similar parts. Tech-
niques exist to search for similar processes [6]. However, searching

0950-5849/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2011.04.001

⇑ Corresponding author. Tel.: +31 40 2474370; fax: +31 40 2432612.
E-mail addresses: r.m.dijkman@tue.nl (R. Dijkman), bgf@zurich.ibm.com

(B. Gfeller), jku@zurich.ibm.com (J. Küster), hvo@zurich.ibm.com (H. Völzer).

Information and Software Technology 53 (2011) 937–948

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof

http://dx.doi.org/10.1016/j.infsof.2011.04.001
mailto:r.m.dijkman@tue.nl
mailto:bgf@zurich.ibm.com            
mailto:jku@zurich.ibm.com
mailto:hvo@zurich.ibm.com
http://dx.doi.org/10.1016/j.infsof.2011.04.001
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


similar process parts is in general computationally harder, because
it requires that a process is split up into parts and the number of
potentially relevant process parts can be exponential in the num-
ber of its elements.

This paper has two contributions. Firstly, we show how existing
techniques can be combined to efficiently detect many refactoring
opportunities in practice. In addition, we present, based on that
technique, different metrics to determine the type of problem that
the similarity represents, and therewith the type of the refactoring
that can be applied. Secondly, we evaluate our technique, by apply-
ing it to two real-world reference process model collections. Our
evaluation shows that similar process parts occur frequently in
those collections and that our similarity metrics can indeed be
used for identifying refactoring opportunities.

Our technique focusses only on one aspect of a business process
model, viz. on the activities and the groups they form. This restricts
our attention to certain important refactorings but we can obtain
satisfactory results with a relatively simple technique. Simplicity
is not only helpful to transfer a technique to practical application,
but focussing on that one aspect also makes it easier to apply the
technique across different modeling languages and styles.

The remainder of this paper is organized as follows. Section 2
defines the refactoring opportunities that we aim to detect. We de-
scribe the Refined Process Structure Tree (which originates from
[32,23]) in Section 3 as a basis for determining similarity of process
parts. In Section 4, we define different similarity metrics (Section
4.1, which builds on previous work, and Section 4.2, which is
new), present a technique for computing similarity of process parts
(Section 4.3) and explain its relationship to refactoring opportuni-
ties (Section 4.4). Section 5 reports on the results obtained when
applying the technique to a repository of process models. Section
6 presents related work, before Section 7 concludes the paper.

2. Refactoring opportunities in model collections

This section defines opportunities for four refactoring opera-
tions which improve the quality of a collection of business process

models. The focus of this paper is on automatically identifying such
refactoring opportunities in a collection. Consequently, we derived
the refactoring opportunities by first studying refactoring opera-
tions that have been defined in previous work [33,11,17]; second,
determining the situations in which they can be applied; and,
third, selecting the situations that can be detected automatically
as refactoring opportunities.

Fig. 1 shows the four refactoring opportunities that we have
identified in this manner. For each opportunity, it also shows the
refactoring operation that can be applied to it in order to create a
process model collection that is easier to understand, maintain
and re-use.

The first refactoring opportunity is the situation in which there
are activities (‘Check claim’ and ‘Verify claim’ in the figure) that are
considered to be the same (indicated by the dashed line), but that
have different labels. In this situation, a renaming operation should
be applied to give the activities uniform labels. The decision as to
whether or not the two activities are the same should be made
by a human observer based on, for example, brief descriptions of
the activities or knowledge about what the activities represent in
practice.

The second refactoring opportunity is the situation in which
there are process fragments (defined precisely in the next section)
that are, as a whole, similar, because the activities and control-flow
relations that they are composed of are similar. In this situation the
fragment from one of the process models should substitute the
other fragment and should be extracted into a common subpro-
cess. Figs. 2a and c show two similar process fragments Fa2 and
Fc2 which can be extracted into such a common subprocess.

The third refactoring opportunity is the situation in which there
are process fragments that are similar, but are composed of both
similar activities and activities that appear in one but not in the
other fragment. In this case a common subprocess should replace
the fragments. This subprocess should be composed of both the
similar and the non-similar activities and have the option to skip
the non-similar activities, because these activities can be per-
formed in one process but not in the other. Optionally, the ability

Register

Register

Check

Check

Extract subprocess(b) Fragment with equivalent activities and flow:

Check claim

Verify claim

(a) Similar activities with different names: Rename activities

Check claim

Check claim

Register Check
…

…

…

Extract subprocess with optional elements(c) Fragment with partially equivalent activities and flow:

Extract subprocess with varying business item(d) Fragment with similar activities varying on business items:

Register

Register

Check

Check

…

…

Settle

Pay-out

Register Check
Settle

Pay-out
…

Process car claim

Process house claim

…

…

…
Process car claim

Process house claim

…

…

…

Fig. 1. Refactoring opportunities and operations.

938 R. Dijkman et al. / Information and Software Technology 53 (2011) 937–948



Download	English	Version:

https://daneshyari.com/en/article/550459

Download	Persian	Version:

https://daneshyari.com/article/550459

Daneshyari.com

https://daneshyari.com/en/article/550459
https://daneshyari.com/article/550459
https://daneshyari.com/

