
Information and Software Technology 74 (2016) 1–16

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Combining lexical and structural information to reconstruct software

layers

Alvine Boaye Belle

∗, Ghizlane El Boussaidi , Sègla Kpodjedo

Department of Software and IT engineering, École de technologie supérieure, Montreal, Canada

a r t i c l e i n f o

Article history:

Received 26 July 2015

Revised 22 December 2015

Accepted 21 January 2016

Available online 15 February 2016

Keywords:

Software maintenance

Reverse engineering

Architecture recovery

Layering style

Hill climbing

Latent Dirichlet Allocation

a b s t r a c t

Context: The architectures of existing software systems generally lack documentation or have often

drifted from their initial design due to repetitive maintenance operations. To evolve such systems, it is

mandatory to reconstruct and document their architectures. Many approaches were proposed to support

the architecture recovery process but few of these consider the architectural style of the system under

analysis. Moreover, most of existing approaches rely on structural dependencies between entities of the

system and do not exploit the semantic information hidden in the source code of these entities.

Objective: We propose an approach that exploits both linguistic and structural information to recover

the software architecture of Object Oriented (OO) systems. The focus of this paper is the recovery of

architectures that comply with the layered style, which is widely used in software systems.

Method: In this work, we (i) recover the responsibilities of the system under study and (ii) assign these

responsibilities to different abstraction layers. To do so, we use the linguistic information extracted from

the source code to recover clusters corresponding to the responsibilities of the system. Then we assign

these clusters to layers using the system’s structural information and the layered style constraints. We

formulate the recovery of the responsibilities and their assignment to layers as optimization problems

that we solve using search-based algorithms.

Results: To assess the effectiveness of our approach we conducted experiments on four open source

systems. The so-obtained layering results yielded higher precision and recall than those generated using

a structural-based layering approach.

Conclusion: Our hybrid lexical–structural approach is effective and shows potential for significant im-

provement over techniques based only on structural information.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recovering architectures of existing software systems remains

a challenge, especially in the context of large and complex sys-

tems. Architecture recovery may be achieved using a bottom-up

process that starts from source code and progressively constructs

a more abstract representation of the system [1] . Such represen-

tation helps supporting the designer in understanding and prop-

erly evolving an existing software system. Thus, many approaches

were proposed to support the architecture recovery process. Most

of these approaches (e.g., [2,4]) rely on clustering techniques to

find a division of the system that optimizes the modularity of re-

sulting clusters in terms of high-cohesion and low-coupling. How-

∗ Corresponding author. Tel.: +15145858531.

E-mail addresses: ak20180@ens.etsmtl.ca , nebliva@gmail.com (A.B. Belle),

Ghizlane.ElBoussaidi@etsmtl.ca (G.E. Boussaidi), Segla.Kpodjedo@etsmtl.ca (S.

Kpodjedo).

ever, these approaches do not consider the architectural style of

the system under analysis.

In this paper, we focus on the recovery of architectures that

comply with the layered style, which is widely used in software

systems. The layered style is a technique for structuring software

as an organized hierarchy of layers where each layer provides ser-

vices to the layer above it and serves as a client to the layer be-

low [5,6] . Each layer comprises a set of modules which are co-

hesive with respect to their responsibilities [6] . In a “strict” [5]

(or “closed” [7]) layering, the layers should interact according to

a strict ordering relation, i.e. a layer may only use services of the

next lower layer.

The layered style promotes many quality attributes such as

reuse, portability and maintainability but also comes with some

liabilities such as a lack of flexibility and weak performance [5] . To

address these liabilities, current practice involves some deviations

from a strict layering: (i) skip-calls [8] (also called “layer bridging”

[6]) and (ii) back calls [8] (also called “upward usage” [6]). Skip

calls refer to situations in which a layer uses services of a layer

http://dx.doi.org/10.1016/j.infsof.2016.01.008

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.01.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.01.008&domain=pdf
mailto:ak20180@ens.etsmtl.ca
mailto:nebliva@gmail.com
mailto:Ghizlane.ElBoussaidi@etsmtl.ca
mailto:Segla.Kpodjedo@etsmtl.ca
http://dx.doi.org/10.1016/j.infsof.2016.01.008

2 A.B. Belle et al. / Information and Software Technology 74 (2016) 1–16

that is not immediately below it [6] . Back calls refer to (normally

exceptional) situations in which a layer needs to rely on a service

offered by an upper layer.

Thus the structure of an architecture which complies strictly

with the layered style is a directed acyclic graph. This property led

to several layering recovery approaches that are based on a depth

traversal of dependency graphs built from the analyzed system

(e.g., [3,8–11]), often coupled with some heuristics to deal with

the violations of this property. For instance, [8,9,11] rely on heuris-

tics to resolve cyclic dependencies while [9,10] propose heuristics

based on the number of fan-out and fan-in dependencies of an en-

tity (i.e., class or package) to assign it to the lowest or highest-

level layer. These heuristics may result in architectures with very

few layers (e.g., in case of a heuristic based on highly connected

modules [8,11]) or too many layers (e.g., in case of heuristics to

resolve cyclic dependencies [9]). Besides, most of these approaches

rely on structural dependencies between entities of the system and

do not exploit the semantic information hidden in the source code

of these entities.

In this paper, we propose an approach that combines lexical

and structural information of a given system to recover its layered

architecture. We use the lexical information to recover the respon-

sibilities of the system. To do so, we identify meaningful topics in

entities of the system using the Latent Dirichlet Allocation (LDA)

statistical model [12] . Assuming that the topics of an entity con-

vey some evidence about its responsibilities, we use these topics

to group similar entities into clusters corresponding to responsibil-

ities of the system. We then assign the resulting clusters to layers

using the structural information and exploiting layering properties

and constraints that we defined in previous work [13] . Both the

processes of recovering responsibilities of the system and assign-

ing them to layers are formalized as optimization problems that

are solved with a search-based algorithm. The effectiveness of our

approach is evaluated through an experiment on four open source

systems and a comparative study between our approach and two

other approaches that use structural information only. The results

of these experiments are promising and they show the potential

of the proposed approach for significant improvements over purely

structural-based approaches.

The paper is organized as follows. Section 2 is dedicated

to some necessary background on LDA and to related work.

An overview of the proposed approach is given in Section 3 .

Section 4 presents the process of recovering responsibilities of the

system while section 5 presents the process of assigning them to

layers. Section 6 describes the experimental setting. Section 7 re-

ports and discusses the experimental results. Section 8 concludes

the paper and outlines some future directions for our work.

2. Background and related works

2.1. Latent Dirichlet Allocation

Extracting lexical information such as identifier names and

comments allows enriching software analysis [14] . To extract

the lexical information, a current practice is to resort to topic

modeling. A topic model is a statistical method that analyzes the

words contained in a corpus of documents in order to extract

the themes that run through these documents, the links between

these themes and the evolution of these themes over time [12] .

One of the most popular topic modeling technique is LDA (Latent

Dirichlet Allocation), which is a probabilistic model used in nat-

ural language processing to extract a set of latent topics from a

corpus of text documents [15] . LDA models each document as a

probability distribution over topics and each topic as a probability

distribution over the words in the vocabulary [16] . The estimation

of these distributions allows generating the set of T topics used in

the corpus of documents as well as the distribution of these topics

in each document [15] . Relying on topic distributions instead of

bags of words to represent documents not only decreases the ef-

fect of lexical variability but also preserves the semantic structure

of the corpus of documents [18] .

LDA takes as input a word-by-document matrix M where m ij

represents the importance of the word w i in the document d j . It

also requires a set of hyper-parameters that affect the resulting

distributions of topics per document and words per topic. Simply

explained, these hyper-parameters are ([15] and [17]):

(1) α which impacts the topic distribution per document: the

higher α, the higher the likeliness for every document to be

composed of every topic in significant proportions.

(2) β which impacts the word distribution per topic: the higher

β , the bigger the set of words per topic.

(3) T which is the number of topics to be identified from the

corpus. A small value of T results in too broad topics i.e.

topics which are constituted by keywords coming from mul-

tiple concepts and that are hard to discriminate [19,16] . On

the other hand, with a too high value of T , the same concept

can be spread over numerous topics and these ones are then

diluted and meaningless [16] . As these topics are made of

idiosyncratic words, they can become uninterpretable [19] .

To estimate topic per document and word per topic distribu-

tions, many approximate algorithms can be used. In this paper, we

use the Gibbs sampling method [20] with the speed-up enhance-

ments introduced by Yao et al. [18] . The Gibbs sampling method

uses a Markov Chain Monte Carlo method to converge to its target

distributions after N iterations, each iteration consisting in sam-

pling a topic for each word.

2.2. Related works

Several approaches have been proposed to recover software ar-

chitectures (e.g., [2–4, 8–11,13,21–26]). These approaches use var-

ious techniques and exploit various information of the analyzed

system [1,27] . Most of these approaches are tailored for specific

languages and platforms and do not rely on a standard data repre-

sentation of the analyzed system [3] . Besides, the lack of ground-

truth architectures or of experts able to produce these architec-

tures impedes the comparison or the assessment of the techniques

used by these approaches [27,4] . In the following we classify exist-

ing approaches into two categories: (i) approaches that target the

architecture recovery in general and (ii) approaches that target the

recovery of layered architectures.

Approaches that target architecture recovery in general: A

popular technique used by these approaches is clustering (e.g.,

[2,4,28,29] . The latter is generally performed using properties, such

as high-cohesion and low-coupling, which are mostly derived from

structural information. In particular, Mancoridis et al. [28] pre-

sented a modularization tool called Bunch which uses a family of

search-based algorithms such as hill climbing (HC) and genetic al-

gorithms (GA) to produce a high level view of an analyzed system.

Bunch uses a fitness function called MQ (Modularization Quality)

which aims at minimizing the coupling between resulting clusters

and maximizing their cohesion. In follow-up papers [2,55] , the au-

thors extended [28] by notably proposing a new formulation of

MQ. Praditwong et al. [29] formulated software module clustering

as a multi-objective problem that they solved using an evolution-

ary algorithm.

Important knowledge is embedded in the identifiers and com-

ments found in the source code [14,31] . Some approaches (e.g.,

[14,32,33]) propose a lexical-based clustering approach that ignores

structural dependencies when partitioning a system into subsys-

tems. In particular, Anquetil and Lethbridge [34] used file names

Download English Version:

https://daneshyari.com/en/article/550469

Download Persian Version:

https://daneshyari.com/article/550469

Daneshyari.com

https://daneshyari.com/en/article/550469
https://daneshyari.com/article/550469
https://daneshyari.com

