
Information and Software Technology 74 (2016) 45–54 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

The effects of test driven development on internal quality, external 

quality and productivity: A systematic review 

Wilson Bissi a , ∗, Adolfo Gustavo Serra Seca Neto 

b , Maria Claudia Figueiredo Pereira Emer b 

a Information Technology Department, Global Village Telecom, 2197 Dário Lopes dos Santos Avenue, Curitiba, Paraná, 80210-010, Brazil 
b Academic Department of Informatics, Federal University of Technology - Paraná, 3165 Sete de Setembro Avenue, Curitiba, Paraná, 80230-901, Brazil 

a r t i c l e i n f o 

Article history: 

Received 2 December 2015 

Revised 12 February 2016 

Accepted 15 February 2016 

Available online 24 February 2016 

Keywords: 

Test-driven development 

Productivity 

Internal quality 

External quality 

Systematic review 

a b s t r a c t 

Context: Test Driven Development (TDD) is an agile practice that has gained popularity when it was de- 

fined as a fundamental part in eXtreme Programming (XP). 

Objective: This study analyzed the conclusions of previously published articles on the effects of TDD on in- 

ternal and external software quality and productivity, comparing TDD with Test Last Development (TLD). 

Method: In this study, a systematic literature review has been conducted considering articles published 

between 1999 and 2014. 

Results: In about 57% of the analyzed studies, the results were validated through experiments and in 32% 

of them, validation was performed through a case study. The results of this analysis show that 76% of 

the studies have identified a significant increase in internal software quality while 88% of the studies 

identified a meaningful increase in external software quality. There was an increase in productivity in 

the academic environment, while in the industrial scenario there was a decrease in productivity. Overall, 

about 44% of the studies indicated lower productivity when using TDD compared to TLD. 

Conclusion: According to our findings, TDD yields more benefits than TLD for internal and external soft- 

ware quality, but it results in lower developer productivity than TLD. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

According to the annual report conducted by Version One [1] , 

Test Driven Development (TDD) is one of the agile practices most 

frequently used in the software development industry. About 38% 

of respondents answered that they use this practice. A study con- 

ducted in Brazil showed that 39.50% of respondents use TDD for 

software development [2] . 

According to Beck [3] , TDD is a software development practice 

where automated unit tests are incrementally written even before 

the source code is implemented. 

TDD has gained popularity when it was defined as a fundamen- 

tal part of the development process called Extreme Programming 

(XP) [4] . Currently, this practice is used independently in the soft- 

ware industry. 

Several studies have focused on the effects produced by TDD 

practice on software development within the academic setting 

(universities) or in the industry (companies), comparing TDD with 

∗ Corresponding author. Tel.: +55 4499131197. 

E-mail addresses: wbissi@gmail.com , wilson_bissi@hotmail.com (W. Bissi), 

adolfo@utfpr.edu.br (A.G. Serra Seca Neto), mcemer@utfpr.edu.br (M.C.F.P. Emer). 

Test Last Development (TLD). However, most of these studies failed 

to provide conclusive results with regard to productivity and qual- 

ity of developed software [5] . 

The present paper selected and classified academic papers that 

analyzed the effects of TDD on productivity, internal quality and 

external quality of software design, when compared with the TLD 

practice. Only papers that were published between 1999 and 2014 

were selected for this purpose. 

The process of systematic review used in this study initially 

identified 1107 papers; 27 of them were selected and discussed in 

detail. By reviewing each selected study in detail, this paper pro- 

vides greater emphasis on variables used in research validation; for 

example, the setting, the language used in development, the pro- 

file of participants, the type of research method applied and the 

findings of each study. 

After being consolidated, the findings of the present study 

showed that in about 57.14% of the analyzed studies, the results 

were validated through experiments, and in 32.14% of the studies, 

validation was performed through a case study. 

In addition, the results of the analysis of these papers showed 

that for 76% of the studies, there was a significant increase in 

internal software quality and there was a significant increase in 

http://dx.doi.org/10.1016/j.infsof.2016.02.004 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.02.004&domain=pdf
mailto:wbissi@gmail.com
mailto:wilson_bissi@hotmail.com
mailto:adolfo@utfpr.edu.br
mailto:mcemer@utfpr.edu.br
http://dx.doi.org/10.1016/j.infsof.2016.02.004


46 W. Bissi et al. / Information and Software Technology 74 (2016) 45–54 

external software quality in 88% of them. With regard to pro- 

ductivity, there was an increase in the academic environment, 

while in the industrial environment, productivity was decrease. 

Overall, about 44% of the studies indicated lower productivity 

when the TDD practice was used, compared with TLD. 

The remaining sections of this paper are organized as follows: 

Section 2 is focused on describing the TDD practice; Section 3 has 

a detailed description of the research method and the studies se- 

lected for this review. Section 4 presents the results of the analy- 

ses. Section 5 reports the threats to the validity of this systematic 

review. Section 6 discusses the findings and Section 7 presents re- 

lated works to this systematic review. Finally, Section 8 presents 

the conclusion and suggestions for further research. 

2. Context 

Test Driven Development is a software development practice 

whose core idea is to design software incrementally by conducting 

unit tests that will guide the development process. Firstly, devel- 

opers identify the features and write the corresponding unit tests 

to express the desired functionality [6] . The functionality will be 

implemented only after the unit test has been written. 

A unit test examines the behavior of a distinct unit of work [7] . 

This level of testing should to ensure that the smaller units (mod- 

ule, class or method) are operating in accordance with what was 

specified, independent of the rest of the system. 

Kent Beck [3] defines TDD as a set of techniques that encour- 

age the development of simple projects and the development of a 

test suite. According to Beck [8] , although TDD is focused on cre- 

ating automated unit testing, it is not exactly a testing technique. 

It should be considered as a software design technique [9] . 

In the TDD cycle, the test and the code implemented are usu- 

ally related to a small unit of software, a method or a function. 

Therefore, the tests written in this cycle are unit tests. 

TDD is also known by the red-green-refactor cycle [3] , which 

consists of the following steps: 

1. Design and add a unit test; 

2. Run all tests and check the failure of the new test added in 

step 1 (red); 

3. Add new code that is sufficient to satisfy the new test; 

4. Run all tests, repeat step 3 if necessary until all tests have 

passed (green); 

5. Refactor to improve the code/test structure; 

6. Run all the tests after refactoring to ensure that all tests 

have passed. 

As noted in the red-green-refactor cycle, before implementing a 

new feature, a unit test should be written, and only after it fails, 

the feature code must be developed. At the end of the red-green- 

refactor cycle, the developer should refactor the code and tests be- 

fore starting the development of the next feature. This refactoring 

is required to improve the internal structures of the software. 

The comparison between TDD and TLD is the basis for many 

previous studies. Fig. 1 shows and compares the development flow 

followed in each of the practices, and clarifies the differences be- 

tween them. 

Fig. 1 shows the development of a new functionality in TDD 

and TLD flows. The main difference shown in Fig. 1 is that in the 

TDD flow, the second step is to write the test and then run it; if 

it fails, the functionality source code is written to pass test and if 

necessary, the source code is refactored. While in the TLD flow, the 

second step is to write the functionality source code and then the 

test is written and performed [11] . 

In TLD, developers can write tests iteratively after the comple- 

tion of the feature code or choose to write all the tests at the 

end of the implementation of the entire system. This depends on 

Table 1 

Online libraries. 

Source Search date 

IEEE Xplore 18/12/2014 

ScienceDirect 18/12/2014 

ACM Digital Library 19/12/2014 

CiteSeerx 20/12/2014 

Wiley Online Library 20/12/2014 

the development process model specified for the software devel- 

opment. However, in TLD a unit test should be written only after 

the feature code has been finalized. 

3. Method 

The research method used in this study was a systematic re- 

view of the literature, following the guidelines described in [12] . A 

systematic review is an empirical study in which a research ques- 

tion or hypothesis is addressed to gather evidence of a number of 

primary studies through a systematic process of research and data 

extraction [13] . 

The search and selection phases of this systematic review ware 

conducted by the first author who holds undergraduate and spe- 

cialization degrees in software development and currently is a 

graduate student in applied computing. 

3.1. Research process 

The research process of the systematic review was started by 

defining the research protocol, which defines the purpose of the 

review. As a first task, four research questions were formulated. 

Defining the research questions or hypotheses is an essential 

part of the systematic review because they will guide the entire 

review [14] . 

1. What are the main effects achieved by applying the TDD 

practice to software development? 

2. Which development paradigms is the TDD practice applied 

to? 

3. How does the practice of TDD influence productivity as well 

as internal and external software quality? 

4. What are the effects of the TDD practice as measured during 

the software development process? 

After the research questions were defined, the primary studies 

were identified in the knowledge bases listed in Table 1 by means 

of the research string defined in Section 3.2 . After the search was 

performed in the knowledge bases, the works were selected and 

classified as shown in Section 3.3 . Section 3.4 presents the criteria 

used to select the papers, and Section 3.5 describes how the data 

were extracted from the analyzed papers. 

3.2. Identification of primary studies 

In order to find the relevant studies, the most important search 

terms were identified and selected. This review adopted a guide- 

line widely used in the medical field to identify the effectiveness 

of a treatment, which implies the use of three points of view: Pop- 

ulation, Intervention and Outcomes. 

These guidelines were initially presented by [15] and extended 

later in [16] with the following definition: 

• Population: any specific role of software engineering or the field 

of application of a research study. 
• Intervention: software technologies that address specific issues. 
• Results: relative to factors of importance to researchers. 



Download English Version:

https://daneshyari.com/en/article/550471

Download Persian Version:

https://daneshyari.com/article/550471

Daneshyari.com

https://daneshyari.com/en/article/550471
https://daneshyari.com/article/550471
https://daneshyari.com

