
Information and Software Technology 74 (2016) 69–85

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Effective algorithms for constructing minimum cost adaptive

distinguishing sequences

Uraz Cengiz Türker ∗, Tonguç Ünlüyurt , Hüsnü Yenigün

Sabanci University, Orhanli, Tuzla, Istanbul 34956, Turkey

a r t i c l e i n f o

Article history:

Received 4 January 2015

Revised 1 February 2016

Accepted 2 February 2016

Available online 26 February 2016

Keywords:

Finite State Machines

Adaptive distinguishing sequences

Checking sequences

a b s t r a c t

Context: Given a Finite State Machine (FSM), a checking sequence is a test sequence that determines

whether the system under test is correct as long as certain standard assumptions hold. Many checking

sequence generation methods use an adaptive distinguishing sequence (ADS), which is an experiment

that distinguishes the states of the specification machine. Furthermore, it has been shown that the use

of shorter ADSs yields shorter checking sequences. It is also known, on the other hand, that constructing

a minimum cost ADS is an NP-hard problem and it is NP-hard to approximate. This motivates studying

and investigating effective ADS construction methods.

Objective: The main objective of this paper is to suggest new methods that can compute compact ADSs

to be used in the construction of checking sequences.

Method: We briefly present the existing ADS construction algorithms. We then propose generalizations

of these approaches with a set of heuristics. We also conduct experiments to compare the size of the

resultant ADSs and the length of the checking sequences constructed using these ADSs .

Results: The results indicate that when the ADSs are constructed with the proposed methods, the length

of the checking sequences may reduce up to 54% (40% on the average).

Conclusions: In this paper, we present the state of the art ADS construction methods for FSMs and we pro-

pose generalizations of these methods. We show that our methods are effective in terms of computation

time and ADS quality.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Testing is an important part of the software development pro-

cess but is typically manual and, as a result, expensive and error

prone. Therefore, there has been a significant interest in automat-

ing testing from formal specifications. A widely used formal model

for the specification is the Finite State Machine (FSM) model. The

FSM model and its extensions such as Specification and Descrip-

tion Language (SDL) [1] or State-Charts [2] are also used to model

the semantics of the underlying software.

Deriving test sequences from FSM models, therefore, has

been an attractive topic for various application domains such as

sequential circuits [3] , lexical analysis [4] , software design [5] ,

communication protocols [6–11] , object-oriented systems [12] , and

web services [13,14] . Such techniques have also been shown to

∗ Corresponding author. Tel.: +90 5073631731.

E-mail addresses: urazc@sabanciuniv.edu , uraz.turker@brunel.ac.uk (U.C. Türker),

tonguc@sabanciuniv.edu (T. Ünlüyurt), yenigun@sabanciuniv.edu (H. Yenigün).

be effective in important industrial projects [15] . The purpose of

generating these test sequences is to decide whether an imple-

mentation conforms to its specification. An implementation is said

to conform to its specification when the implementation has the

same behavior as defined by the FSM specification.

In order to determine whether an implementation N has the

same behavior as the specification M , a test sequence (an in-

put/output sequence) is derived from M and the input portion of

the sequence is applied to N . The final decision is made by compar-

ing the output sequence produced by N (i.e. the actual output) and

the output portion of the test sequence (i.e. the expected output). If

there is a difference between the actual and the expected output,

then N is a faulty implementation of M . Although, in general, hav-

ing no difference between the actual and the expected output does

not mean that N is a correct implementation of N , it is possible to

construct a test sequence with such a guarantee under some con-

ditions on M and N . A test sequence with such a full fault coverage

is called a checking sequence [5,16] .

The literature contains many techniques that automatically

generate checking sequences [5,16–21] . In principle, checking

http://dx.doi.org/10.1016/j.infsof.2016.02.001

0950-5849/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.infsof.2016.02.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.02.001&domain=pdf
mailto:urazc@sabanciuniv.edu
mailto:uraz.turker@brunel.ac.uk
mailto:tonguc@sabanciuniv.edu
mailto:yenigun@sabanciuniv.edu
http://dx.doi.org/10.1016/j.infsof.2016.02.001

70 U.C. Türker et al. / Information and Software Technology 74 (2016) 69–85

sequences constructed by these approaches consist of three types

of components: initialization, state identification , and transition ver-

ification . As the transition verification components are also based

on identifying the starting and ending states of the transitions,

a checking sequence incorporates many applications of input se-

quences to identify the states of the underlying FSM.

For state identification several alternative approaches exist,

such as Distinguishing Sequences (DS), Unique Input Output (UIO)

Sequences or Characterizing Sets (W-Set) . Among these alternatives,

a checking sequence of polynomial length can be constructed in

polynomial time when a DS exists [19,22] . Checking sequences

constructed without using a DS, on the other hand, are in general

of exponential length [19] . Therefore, many techniques for con-

structing checking sequences either use a given DS [17,18,23,24] ,

or use both DS and other alternatives together [25–27] for state

identification.

There are two types of distinguishing sequences. A Preset Distin-

guishing Sequence (PDS) is a single input sequence for which differ-

ent states of FSM produce different output sequences. On the other

hand, an Adaptive Distinguishing Sequence (ADS) (also known as a

Distinguishing Set [28]) can be thought as a rooted decision tree

with n leaves, where n is the number of states of M . The internal

nodes of the tree are labeled by input symbols and the leaves are

labeled by distinct states. The edges emanating from a common

node have different output symbols labeling the edges. The con-

catenation of input and output labels on a path from the root node

a leaf node labeled by a state s , correspond the output sequence

that would be obtained when this input sequence is applied to the

state s . We present a formal definition of ADS in Section 2 .

The use of ADS is straightforward: to identify the current state

of an FSM, one applies the input symbol at the root and follows

the outgoing edge labeled by the output symbol that is produced

by the FSM. The procedure is repeated for the root of the subtree

reached in this way, as long as the current node is an internal node

of the ADS . When a leaf node is reached, the state label of the node

gives the initial state that the experiment started.

In this paper, we consider deterministic and completely specified

FSMs 1 . For constructing a checking sequence for such FSMs, us-

ing an ADS rather than a PDS is advantageous. Lee and Yannakakis

show that checking the existence of and computing a PDS is a

PSPACE -complete problem. On the other hand, for a given FSM M

with n states and m input symbols, the existence of an ADS can be

decided in O (mn log n) time [29] .

1.1. Literature review

This section reviews previous work on ADSs. There are many

computational complexity results regarding ADSs for deterministic

and complete FSMs. Although earlier bounds for the height of ADSs

are exponential in the number of states [30] , Sokolovskii proved

that if an FSM M with n states has an ADS, then it has an ADS with

height ≤ π2 n 2 /12 [31] . Moreover, Kogan claimed that, for a given

n state FSM, the length of an ADS is bounded above by n (n − 1) / 2

[32] . Later Rystsov proved this claim [33] . Lee and Yannakakis pro-

posed an algorithm (LY algorithm) that constructs an ADS with up-

per bound of n (n − 1) / 2 in the worst case in O (mn 2) time [29] . It

was proven that minimizing the height of an ADS (in fact mini-

mizing ADS size with respect to some other metrics as well) is an

NP-hard problem [34] . Türker and Yenigün proposed two heuristics

as a modification of the LY algorithm for minimizing ADSs [34] . Re-

cently Türker et al. also presented an enhanced version of succes-

sor tree algorithm called the lookahead based algorithm (LA) for

ADS minimization [35] .

1 Please see Section 2.1 for the definitions of these terms.

Unfortunately, not all FSMs possess an ADS . For such cases,

Hierons and Türker introduced the notion of incomplete ADSs

[36] . They showed that the optimization problems and the cor-

responding approximation problems related to incomplete ADSs

are PSPACE-complete. A greedy algorithm to construct incomplete

ADSs is also given in this work.

Besides these results for deterministic and complete FSMs,

there are also works on ADSs for non-deterministic and incom-

plete FSMs. Kushik et al. present an algorithm for constructing

ADSs for non-deterministic observable FSMs [37] . Since the class

of deterministic FSMs is a subclass of nondeterministic observable

FSMs, the algorithm can also be used to construct ADSs for a given

FSM M .

It was recently shown that for partial FSMs, checking the ex-

istence of an ADS can be done in polynomial time and checking

the existence of a PDS is PSPACE-complete [38] . The height of a

minimum ADS for a partial FSM is known to be at most (n − 1) 2 ,

although it is not known if this bound is tight [39] . Finally in

[40] the authors propose a brute-force massively parallel algorithm

for deriving ADSs / PDSs from partial observable nondeterministic

FSMs.

1.2. Motivation and problem statement

As the length of the checking sequence determines the dura-

tion and hence the cost of testing, there exists a line of work to

reduce the length of checking sequences. In these works, the goal

is to generate a shorter checking sequence, by putting the pieces

that need to exist in such a checking sequence together in a better

way [17,18,21,23,41–43] . However in [34] Türker and Yenigün show

the potential enhancements of constructing minimum cost ADSs

on the length of checking sequences and examined the computa-

tional complexity of constructing minimum cost ADSs .

In their work, they define the “cost” of an ADS as (i) the height

of the ADS (MinHeightADS problem), (ii) the sum of the depths of

all leaves in the ADS (external path length) (MinADS problem), and

(iii) the weighted sum of the depths of the leaves in the ADS (Min-

WeightADS problem). They showed that constructing a minimum

ADS with respect to these cost metrics are NP-complete and NP-

hard to approximate. They proposed two different modifications

for the LY algorithm called GLY1 and GLY2 for constructing com-

pact ADSs with respect to minimum height and minimum external

path length.

As shown in Section 1.1 , except for the exponential time al-

gorithms [30,35,44] , there have been no polynomial time algo-

rithm proposed for constructing minimum cost ADSs . Besides there

have been no work reported for constructing ADSs with mini-

mum weight and there exists no work that shows the effect of

using such ADSs for constructing checking sequences. This paper

is mainly motivated by these observations.

In this paper, we first provide a brief summary for the exist-

ing ADS construction algorithms including STA, LY, GLY1, GLY2 and

LA algorithms and then we propose generalizations of these ap-

proaches: (1) Low-cost ST construction approach (LCST) (2) Splitting

Forest Algorithm (SFA), and (3) Splitting Graph Algorithm (SGA) for

constructing reduced size ADSs . Furthermore, we present a set of

new heuristics to construct ADSs with minimum height, minimum

external path length and minimum weight.

LCST is a generalization of GLY1 and GLY2 algorithms. SFA

makes use of a splitting forest (SF) to construct an ADS , and SGA

makes use of a splitting graph (SG) to construct an ADS . Construc-

tion of STs, SFs and SGs are guided by different heuristics based

on the objective, such as minimizing the height, the external path

length or the weight of the ADS . LCST and SFA are polynomial time

methods but SGA may require exponential time (with the number

of states of the underlying FSM) to construct an ADS .

Download English Version:

https://daneshyari.com/en/article/550473

Download Persian Version:

https://daneshyari.com/article/550473

Daneshyari.com

https://daneshyari.com/en/article/550473
https://daneshyari.com/article/550473
https://daneshyari.com

