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a b s t r a c t

In reported microcanonical molecular dynamics simulations, fast-folding proteins CLN025 and Trp-cage
autonomously folded to experimentally determined native conformations. However, the folding times of
these proteins derived from the simulations were more than 4e10 times longer than their experimental
values. This article reports autonomous folding of CLN025 and Trp-cage in isobariceisothermal molec-
ular dynamics simulations with agreements within factors of 0.69e1.75 between simulated and exper-
imental folding times at different temperatures. These results show that CLN025 and Trp-cage can now
autonomously fold in silico as fast as in experiments, and suggest that the accuracy of folding simulations
for fast-folding proteins begins to overlap with the accuracy of folding experiments. This opens new
prospects of developing computer algorithms that can predict both ensembles of conformations and
their interconversion rates for a protein from its sequence for artificial intelligence on how and when a
protein acts as a receiver, switch, and relay to facilitate various subcellular-to-tissue communications.
Then the genetic information that encodes proteins can be better read in the context of intricate bio-
logical functions.

© 2017 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

How fast can fast-folding proteins autonomously fold in silico?
This question is important because experimental folding times (ts)
[1e3] are rigorous benchmarks for evaluating the accuracy of
protein folding simulations. If accurate, such simulations offer not
only insight into protein folding pathways and mechanisms [4e7]
but also a means to determine ensembles of conformations and
their interconversion rates for a protein, which are responsible for
“proteins to act as receivers, switches, and relays and facilitate
communication from the subcellular level through to the cell and
tissue levels” [8]. Due to approximations in the empirical potential
energy functions for the folding simulations, most simulated ts
reported to date have been much longer than the corresponding
experimental ts. For example, early molecular dynamics (MD)
simulations of fast-folding proteins using a distributed computing
implementation with implicit solvation yielded ts that were
consistent with the corresponding experimental values if Ca root
mean square deviation (CaRMSD) cutoffs of 2.5e3.0 Å or 3.622 Å (in

combinationwith a set of secondary structure criteria) were used to
identify conformations that constitute the native structural en-
sembles [9,10]. However, according to the reported sensitivities of
the simulated ts to CaRMSD cutoffs [9,10], the ts would be
considerably longer than the experimental values, if typical
CaRMSD cutoffs of <2.0 Å were used. For another example,
advanced microcanonical MD simulations predicted ts of fast-
folding proteins CLN025 [11] and Trp-cage [12] to be 600 ns at
343 K and 14 ms at 335 K, respectively [13]. These ts are of high
quality as the ts were derived from the microcanonical MD simu-
lations that resulted in the most populated conformations of
CLN025 and Trp-cage with CaRMSDs of 1.0 and 1.4 Å from the
experimental native conformations, respectively [13]. However,
because the experimental ts of the two proteins reportedly in-
crease as temperature decreases [1,2], the simulated ts at 300 K are
conceivably more than 4e10 times longer than the experimental ts.
Therefore, how fast fast-folding proteins fold in silico equates to
how accurate protein folding simulations can be. Most reported ts
to date suggest that fast-folding proteins cannot autonomously fold
in silico as fast as in experiments. This implies an accuracy gap
between simulation and experiment for protein folding rate (1/t)
that is determined by folding mechanism or pathways [14].

To narrow the accuracy gap, a new protein simulation method
was developed. This method uses uniformly scaled atomic masses
to compress or expand MD simulation time for improving
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configurational sampling efficiency or temporal resolution [15e17].
Uniformly reducing all atomic masses of a simulation system by
tenfold can compress the simulation time by a factor of
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and
hence improve the configurational sampling efficiency of the low-
mass simulations at temperatures of �340 K [16]. As detailed in
Refs. [15,16], this method facilitates protein folding simulations on
personal computers (such as Apple Mac Pros) under iso-
bariceisothermal conditions at which most experimental folding
studies are performed. As explained in Ref. [16], the kinetics of the
low-mass simulation system can be converted to the kinetics of the
standard-mass simulation system by simply scaling the low-mass
time with a factor of
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. Subsequently, this low-mass simula-
tion method led to the development of a revised AMBER forcefield
that has shown improvements in (i) autonomously folding fast-
folding proteins, (ii) simulating genuine localized disorders of fol-
ded globular proteins, and (iii) refining comparative models of
monomeric globular proteins [18e20]. Hereafter the combination
of the revised AMBER forcefield with the low-mass simulation
method is termed FF12MC [18].

Further, in performing zebrafish toxicology experiments for a
different project, this author observed that the times-to-death of
the 20 toxin-treated fish varied widely in each experiment,
although all 20 fish with nearly the same body weights received an
intraperitoneal injection of the same dose of the same batch of
botulinum neurotoxin serotype A. Yet, the mean time-to-death and
its 95% confidence interval (95%CI) calculated using the open-
source R survival package [21] varied slightly from one experi-
ment to another. The resemblance of the live and dead states of the
zebrafish to the unfolded and folded states of a protein inspired the
use of the R survival package to predict t of a fast-folding protein
from its sequence as follows [16,18]: Perform (i) �20 distinct and
independent MD simulations to autonomously fold a fast-folding
protein sequence using FF12MC, which results in �20 sets of
instantaneous protein conformations in time, (ii) a cluster analysis
of all instantaneous conformations from the �20 sets to obtain the
average conformation of the largest cluster and use the average
conformation as the predicted native conformation of the protein,
and (iii) a survival analysis using the �20 sets of the instantaneous
conformations in time and the predicted native conformation to
determine the mean t and its 95%CI. As exemplified in Refs. [16,18],
one advantage of this survival analysis method is that the t pre-
diction does assume that the fast-folding protein must follow a
two-state folding mechanism; another advantage is rigorous esti-
mation of mean t and 95%CI from �20 simulations that are rela-
tively short so that a few of these simulations may not capture a
folding event.

As demonstrated below, use of the methods and forcefield
outlined above resulted in accurate prediction of ts for CLN025 and
Trp-cage (TC10b) and an answer to the important question of how
fast fast-folding proteins fold in silico. A total of 160 distinct, in-
dependent, unrestricted, unbiased, isobariceisothermal, micro-
second MD simulations with a total aggregated simulation time of
1011.2 ms were used for the prediction. All simulation times
described hereafter have been converted to standard-mass simu-
lation times.

2. Methods

2.1. Molecular dynamics simulations

A fast-folding protein in a fully extended backbone conforma-
tion was solvated with the TIP3P water [22] with surrounding
counter ions and/or NaCls and then energy-minimized for 100 cy-
cles of steepest-descent minimization followed by 900 cycles of
conjugate-gradient minimization to remove close van der Waals

contacts using SANDER of AMBER 11 (University of California, San
Francisco). The resulting system was heated from 5 K to a tem-
perature of 280e300 K at a rate of 10 K/ps under constant tem-
perature and constant volume, then equilibrated for 106 timesteps
under constant temperature and constant pressure of 1 atm
employing isotropic molecule-based scaling, and finally simulated
in 40 distinct, independent, unrestricted, unbiased, and iso-
bariceisothermal MD simulations using PMEMD of AMBER 11 with
a periodic boundary condition at 280e300 K and 1 atm. The fully
extended backbone conformations (viz., anti-parallel b-strand
conformations) were generated by MacPyMOL Version 1.5.0
(Schr€odinger LLC, Portland, OR). The numbers of TIP3P waters and
surrounding ions, initial solvation box size, and ionizable residues
are provided in Table S1. The 40 unique seed numbers for initial
velocities of Simulations 1e40 are listed in Table S2. All simulations
used (i) a dielectric constant of 1.0, (ii) the Berendsen coupling al-
gorithm [23], (iii) the Particle Mesh Ewald method to calculate
electrostatic interactions of two atoms at a separation of >8 Å [24],
(iv) Dt ¼ 1.00 fs of the standard-mass time [18], (v) the SHAKE-
bond-length constraints applied to all bonds involving hydrogen,
(vi) a protocol to save the image closest to the middle of the “pri-
mary box” to the restart and trajectory files, (vii) a formatted restart
file, (viii) the revised alkali and halide ions parameters [25], (ix) a
cutoff of 8.0 Å for nonbonded interactions, (x) the atomic masses of
the entire simulation system (both solute and solvent) were
reduced uniformly by tenfold, and (xi) default values of all other
inputs of the PMEMDmodule. The forcefield parameters of FF12MC
are available in the Supporting Information of Ref. [16]. All simu-
lations were performed on an in-house cluster of 100 12-core Apple
Mac Pros with Intel Westmere (2.40/2.93 GHz).

2.2. Folding time estimation

The t of a fast-folding protein was estimated from the mean
time-to-folding in 40 distinct, independent, unrestricted, unbiased,
and isobariceisothermal MD simulations using survival analysis
methods [21] implemented in the R survival package Version
2.38e3 (http://cran.r-project.org/package¼survival). A Ca and Cb
root mean square deviation (CabRMSD) cutoff of 0.98 Å was used to
identify conformations that constitute the native structural
ensemble. For each simulation with conformations saved at every
105 timesteps, the first time-instant at which CabRMSD reached
�0.98 Å was recorded as an individual folding time (Table S3).
Using the Kaplan-Meier estimator [26,27] [the Surv() function in
the R survival package], the mean time-to-folding was first calcu-
lated from 40 simulations each of which captured a folding event at
a low temperature of 280 K or 293 K. If a parametric survival
function mostly fell within the 95%CI of the Kaplan-Meier estima-
tion for these low-temperature simulations, the parametric survival
function [the Surreg() function in the R survival package] was then
used to calculate (i) the mean time-to-folding of the 40 low-
temperature simulations and (ii) the mean time-to-folding of 40
new simulations, which were identical to the low-temperature
simulations except that the temperature was increased to 300 K.

2.3. Cluster analysis and data processing

The conformational cluster analyses of CLN025 and TC10b were
performed using CPPTRAJ of AmberTools 16 (University of Califor-
nia, San Francisco) with the average-linkage algorithm [28], epsilon
of 2.0 Å, and root mean square coordinate deviation on all Ca and
Cb atoms (see Table S4). No energyminimizationwas performed on
the average conformation of any cluster. The linear regression
analysis was performed using the PRISM 5 program for Mac OS X,
Version 5.0d (GraphPad Software, La Jolla, California).
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