
Information and Software Technology 74 (2016) 127–142 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

The relationship between design patterns and code smells: An 

exploratory study 

Bartosz Walter a , ∗, Tarek Alkhaeir b 

a Faculty of Computing, Pozna ́n University of Technology, Pozna ́n, Poland 
b Pozna ́n Supercomputing and Networking Center, Pozna ́n, Poland 

a r t i c l e i n f o 

Article history: 

Received 29 April 2015 

Revised 14 February 2016 

Accepted 14 February 2016 

Available online 3 March 2016 

Keywords: 

Design patterns 

Code smells 

Software evolution 

Empirical study 

a b s t r a c t 

Context —Design patterns represent recommended generic solutions to various design problems, whereas 

code smells are symptoms of design issues that could hinder further maintenance of a software system. 

We can intuitively expect that both concepts are mutually exclusive, and the presence of patterns is 

correlated with the absence of code smells. However, the existing experimental evidence supporting this 

claim is still insufficient, and studies separately analyzing the impact of smells and patterns on code 

quality deliver diverse results. 

Objective —The aim of the paper is threefold: (1) to determine if and how the presence of the design 

patterns is linked to the presence of code smells, (2) to investigate if and how these relationships change 

throughout evolution of code, and (3) to identify the relationships between individual patterns and code 

smells. 

Method —We analyze nine design patterns and seven code smells in two medium-size, long-evolving, 

open source Java systems. In particular, we explore how the presence of design patterns impacts the 

presence of code smells, analyze if this link evolves over time, and extract association rules that describe 

their individual relationships. 

Results —Classes participating in design patterns appear to display code smells less frequently than other 

classes. The observed effect is stronger for some patterns (e.g., Singleton, State-Strategy) and weaker for 

others (e.g., Composite). The ratio between the relative number of smells in the classes participating in 

patterns and the relative number of smells in other classes, is approximately stable or slightly decreasing 

in time. 

Conclusion —This observation could be used to anticipate the smell-proneness of individual classes, and 

improve code smell detectors. Overall, our findings indicate that the presence of design patterns is linked 

with a lower number of code smell instances. This could support programmers in a context-sensitive 

analysis of smells in code. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Design patterns and code smells represent two different ap- 

proaches to assuring source code quality. The first approach, 

perfective, is focused on solutions which positively impact some 

attributes of quality, and which have been empirically validated. 

The other approach, preventive, concentrates on detecting and 

∗ Corresponding author. Tel.: +48 616652980. 

E-mail addresses: bartosz.walter@cs.put.poznan.pl (B. Walter), tarekkh@man. 

poznan.pl (T. Alkhaeir). 

removing elements that could be harmful for a software sys- 

tem, or make it insufficiently effective. Moreover, the preventive 

methods also include mechanisms that can identify symptoms of 

anomalies before their negative impact on quality grows and could 

become destructive for the system. 

Design patterns represent the perfective group as they describe 

practically validated solutions to recurring design problems. They 

can easily be adapted and applied several times without chang- 

ing the core of the concept. Since their introduction to software 

engineering by the Gang of Four in 1994 [15] , they have been an 

object of rising interest of programmers and researchers, and prac- 

tically demonstrated their ability to be implemented in different 

contexts. Intuitively, it is expected that the use of design patterns 

http://dx.doi.org/10.1016/j.infsof.2016.02.003 

0950-5849/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.infsof.2016.02.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2016.02.003&domain=pdf
mailto:bartosz.walter@cs.put.poznan.pl
mailto:tarekkh@man.poznan.pl
http://dx.doi.org/10.1016/j.infsof.2016.02.003


128 B. Walter, T. Alkhaeir / Information and Software Technology 74 (2016) 127–142 

positively impacts several significant characteristics of software 

systems: comprehensibility, readability, reliability, defect proneness 

etc. These assumptions underwent verification in several research 

studies, but their outcome did not deliver a definite answer. For 

example, Vokáč [40] reported that classes participating in design 

patterns contain fewer defects, and Prechelt and Unger [36] ar- 

gued that design patterns have a positive impact on maintainabil- 

ity. On the other hand, a number of studies resulted in the oppo- 

site conclusions, e.g. Khomh and Guéhéneuc [23] , Wendorff [42] or 

Wydaeghe et al. [45] , and results of other studies (e.g. [35] ) were 

inconclusive. Therefore, the question of the patterns’ impact on the 

various attributes of code quality is still open, although there ex- 

ists a consensus among researchers that the use of patterns is a 

recommended practice. 

Code smells, unlike design patterns, play a protective role in 

the software quality improvement process. They were first men- 

tioned by Fowler [14] as a metaphor for high-level signs of bad 

design that can hinder future maintenance of a software system. 

Code smells are symptoms, which can, but not necessarily have to, 

point to an actual issue. Therefore, they are not just patterns to 

be avoided, but rather easy to notice signals that require a more 

thorough examination. 

Several research reports analyzed the impact of smells on vari- 

ous maintenance-related aspects, but, like in the case of patterns, 

the published results are not univocal and lead to different conclu- 

sions. For example, Li and Shatnawi [25] showed that some smells 

are related with higher defect density, while reports by Yamashita 

et al. [38,47,48] challenged a popular belief that smells are intrin- 

sically related with maintainability issues and can be used for ex- 

plaining them. It has also been demonstrated that various factors, 

e.g., code size [46] , domain of a software system [12] , or the age 

of a programmer [29] , play an important role in detecting smells. 

Hence, it is justified to expect that other factors could also enhance 

the detection process. Extending the knowledge about these factors 

could improve our understanding of the role of smells, and their 

meaning for code quality. 

Patterns and smells represent different approaches to software 

quality assurance and cannot be directly compared with each 

other. Intuitively, we expect the code with design patterns to dis- 

play higher quality, and, as a consequence, to expose fewer in- 

stances of code smells. However, taking into account diverse re- 

sults concerning the impact of patterns on quality, and an unclear 

relationship between code smells and maintainability, the link be- 

tween patterns and smells is not so obvious anymore. As a result, 

the relationship deserves a deeper analysis and an experimental 

verification. 

In this report we look for the relationship connecting design 

patterns with code smells, and examine if and how the presence 

of selected patterns interacts with the presence of smells in the 

same classes. Specifically, we present an empirical study which in- 

volves seven code smells and nine design patterns identified in 

two long-evolving, mid-sized Java applications (Apache Maven and 

JFreeChart), and analyze the associations between selected patterns 

and smells. 

The paper is organized as follows. In Section 2 we discuss 

the published work related to smells and/or patterns, in par- 

ticular with respect to the method of detecting them, and in 

relation to selected quality characteristics. In Section 3 we for- 

mulate the research questions and corresponding hypotheses, 

explain the experimental setup for the study, and briefly present 

the subject patterns and smells. Section 4 describes the pro- 

cedure we followed in the study, and the obtained findings. 

In Section 5 we interpret and discuss the results. Finally, in 

Section 6 , we conclude the study and propose future research 

directions. 

2. Related works 

To the best of our knowledge, no analysis of direct relation- 

ships between design patterns and code smells was performed. 

As a result, we provide an overview of smell and pattern detec- 

tion approaches, and the reports on relationships between patterns 

or smells on one side, and various aspects of maintainability (like 

defect- or change-proneness) on the other. 

2.1. Design patterns 

2.1.1. Approaches to detection of design patterns 

The rising popularity of design patterns fostered the develop- 

ment of various approaches of detecting them in code. The most 

popular ones are based on the analysis of the abstract syntax tree 

(AST): they look for a complete representation of patterns (e.g., 

PTIDEJ [16] ) or their selected parts (e.g., MARPLE [3] ), and a com- 

bination of static and dynamic properties of code (e.g., Heuzeroth 

et al. [7,19] ). 

Most of pattern detection tools are available for C++, Java and 

Smalltalk. 

2.1.2. Empirical studies on design patterns 

The systematic literature review on the effectiveness of pat- 

terns, published in 2012 [50] , revealed several studies on the re- 

lation between design patterns and various quality attributes: de- 

fects, effort, and changeability. The general conclusion was that 

there is no firm support for any of the popular claims made for 

patterns, referring to software reliability, maintenance effort etc.; 

they only appear partially useful as a framework that supports 

maintenance, but on the other hand, they do not help novices to 

learn about proper software design. 

A few reports analyzed the impact of patterns on the defect 

proneness. Vokáč [40] compared the defect rates for classes partic- 

ipating in selected design patterns to the defect proneness of en- 

tire project code. They found also significant differences between 

individual patterns with respect to that characteristic: application 

of a pattern does not immediately imply fewer defects. Specifi- 

cally, Singleton and Observer appeared more defect-prone, whereas 

Factory-related patterns had lower defect numbers; the results for 

Template Method were inconclusive. 

Prechelt and Unger [36] performed a series of experiments 

aimed at evaluating the impact of design patterns on the perfor- 

mance. He found that design patterns do not directly contribute to 

the quality, but programmers who implemented the patterns ap- 

peared to document the design more properly and analyzed also 

alternative solutions, which had an overall positive impact on the 

quality. 

Ng et al. [30] analyzed various factors that impact maintenance 

effort. They f ound that the prior exposure of programmers to de- 

sign patterns reduced time necessary to complete a maintenance 

task. 

However, these observations are not supported univocally. For 

example, Khomh and Guéhéneuc [23] reported an empirical study 

concerning the impact of design patterns on code quality. This 

paper concluded, against expectations, that some design patterns 

have a negative impact on reusability or understandability of code, 

so they should be introduced cautiously. 

The evolution of code with patterns was analyzed by Aversano 

et al. [4] . They examined three open source systems, investigating 

the frequency and scope of modifications of design patterns. The 

conclusion was that the patterns closely related to the application’s 

purpose are modified more frequently than others. 

Di Penta et al. [11] investigated the relationship between 

roles played by classes participating in design patterns, and their 



Download English Version:

https://daneshyari.com/en/article/550477

Download Persian Version:

https://daneshyari.com/article/550477

Daneshyari.com

https://daneshyari.com/en/article/550477
https://daneshyari.com/article/550477
https://daneshyari.com

